
Fast and Controllable Post-training Sparsity:
Learning Optimal Sparsity Allocation with Global Constraint in Minutes
Ruihao Gong1,2, Yang Yong2, Zining Wang1, Jinyang Guo3,1, Xiuying Wei2, Yuqing Ma3,1,

Xianglong Liu1*

1State Key Laboratory of Complex & Critical Software Environment, Beihang University
2SenseTime Research

3Institute of Artificial Intelligence, Beihang University
{gongruihao, 19373122, jinyangguo, mayuqing, xlliu}@buaa.edu.cn, {yongyang, weixiuying}@sensetime.com

Abstract
Neural network sparsity has attracted many research interests
due to its similarity to biological schemes and high energy
efficiency. However, existing methods depend on long-time
training or fine-tuning, which prevents large-scale applica-
tions. Recently, some works focusing on post-training spar-
sity (PTS) have emerged. They get rid of the high training
cost but usually suffer from distinct accuracy degradation due
to neglect of the reasonable sparsity rate at each layer. Previ-
ous methods for finding sparsity rates mainly focus on the
training-aware scenario, which usually fails to converge sta-
bly under the PTS setting with limited data and much less
training cost. In this paper, we propose a fast and control-
lable post-training sparsity (FCPTS) framework. By incorpo-
rating a differentiable bridge function and a controllable opti-
mization objective, our method allows for rapid and accurate
sparsity allocation learning in minutes, with the added assur-
ance of convergence to a predetermined global sparsity rate.
Equipped with these techniques, we can surpass the state-of-
the-art methods by a large margin, e.g., over 30% improve-
ment for ResNet-50 on ImageNet under the sparsity rate of
80%. Our plug-and-play code and supplementary materials
are open-sourced at https://github.com/ModelTC/FCPTS.

Introduction
Deep neural networks (DNNs) have achieved remarkable
success in a variety of fields, including computer vision, nat-
ural language processing, and information retrieval. How-
ever, when deploying DNNs on resource-limited edge de-
vices, reducing the memory footprint of neural networks
and improving energy efficiency become crucial problems.
Therefore, various compression techniques are proposed to
make the models efficient (Tan et al. 2019; Li et al. 2021b;
Wei et al. 2022b; Hinton, Vinyals, and Dean 2015; Jacob
et al. 2018; Gong et al. 2019; Li et al. 2021a; Zhu et al.
2020). Among these compression techniques, model spar-
sity, which prunes the unimportant weights to zero, relates
most with the biological brains. Several studies (Hoefler
et al. 2021; Jacob et al. 2018; Gopalakrishnan et al. 2018;
Liu et al. 2020, 2021; Yuan et al. 2021; Hu et al. 2023)
demonstrate that sparsity can contribute to a more robust
and generalized model. Additionally, sparsified weights can

*Corresponding author.
Copyright © 2024, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Figure 1: Comparison with existing post-training sparsity
methods on ImageNet ResNet-50. Our FCPTS enjoys sig-
nificant accuracy improvement, especially for the extremely
high sparsity rates (e.g., 30% boost under 80% sparsity).

be stored in special formats that consume less memory. Due
to the advantage of low inference cost, low memory require-
ment, and high generalization ability, model sparsity has at-
tracted much research interest in the community.

However, despite the benefit of inference performance for
model sparsification, recovering the accuracy of sparse mod-
els is non-trivial. Most methods need to retrain the model for
a long time with a large amount of data. It usually takes sev-
eral hours and even several days when the training dataset
is huge, bringing obstacles for large-scale applications in
all walks of life. Recently, POT (Lazarevich, Kozlov, and
Malinin 2021) proposes to sparsify a neural network in a
post-training way without training labels, significantly de-
creasing the cost of producing a sparse model. They recon-
struct the sparse weight layer by layer to improve the accu-
racy. However, to achieve comparable performance with the
dense counterpart, its maximal overall sparsity rate can only
reach 50%. When the sparsity level increases, accuracy will
crash quickly. This reveals that pushing the limit of post-
training sparsity to a higher sparsity level is still challeng-
ing. To overcome this challenge, we first identified that the
bottleneck of current PTS methods lies in sparsity rate al-

location. The naive non-uniform sparsity allocation does not
sufficiently utilize the sparsity sensitivity of each layer. Thus
the network performance will degrade greatly as long as the
sparse rate exceeds the highest tolerable level that the most
sensitive layer can accept.

To solve this problem, many traditional retraining-based
approaches are proposed to generate a sparsity rate for each
layer, which can be categorized into (1) empirical meth-
ods like ERK (Evci et al. 2020), LAMP (Lee et al. 2021),
etc. (2) learning-based methods like STR (Kusupati et al.
2020), LTP (Azarian et al. 2020), etc. Both types of meth-
ods encounter problems under the PTS setting. The empir-
ical methods heavily depend on handicraft-designed prior
knowledge and cannot promise an optimal solution. The
learning-based methods either destroy the original weight
distribution or require end-to-end training for convergence.
Thereby, they can not realize the efficient and accurate spar-
sity allocation for the post-training case. What’s more, many
of them need to carefully adjust the hyperparameter and re-
peat multiple experiments to reach a target sparsity rate, fur-
ther improving the costs of producing sparse models.

So, the problem remains: How to design an efficient and
effective approach for post-training sparsity? To address this
issue, we propose the Fast and Controllable Post-training
Sparsity (FCPTS) framework, which can learn the opti-
mal sparsity allocation with a global constraint in minutes.
Specifically, we set up a bridge between the pruning thresh-
old and sparsity rate from the probability density perspec-
tive. It is non-trivial to build such a bridge because the
sparsity rate calculation is non-differentiable, hindering the
backpropagation for sparsity allocation learning. To this end,
we use the Kernel Density Estimation (KDE) technique to
build this bridge, which can be represented as a differen-
tiable format, making the backpropagation possible. In this
way, the sparsity rate of layers across the whole net can be
directly optimized in a net-wise pipeline, which is more ef-
ficient than the layer-wise pipeline in the work (Lazarevich,
Kozlov, and Malinin 2021).

Benefiting from the controllable net-wise optimization,
we can obtain the desired sparse neural network in one pass.
The whole reconstruction process can be completed within
30 minutes for typical DNNs (e.g., ResNet-18). What’s
more, equipped with the differentiable modeling of sparsity
rate, we can learn the optimal sparsity allocation for each
layer without harm to the original weight and thus further
unleash the potential for higher sparsity level. With FCPTS,
we can produce models with a 70% global sparsity rate with
accuracy on par with the dense counterparts. The total pro-
cess just takes dozens of minutes.

Our FCPTS framework (Figure 2) owns the following ad-
vantages compared to state-of-the-art solutions:
1. High efficiency. With FCPTS, the reconstructed sparse

network can converge quickly with limited data by net-
wise optimization. Thanks to the post-training paradigm
and the net-wise optimization pipeline, our FCPTS is ex-
tremely efficient. To the best of our knowledge, the time
for producing accurate sparse ImageNet models is for the
first time reduced to minutes, compared to hours for the
existing PTS method.

2. Controllable sparsity allocation. With the help of differ-
entiable FCPTS, the final optimized sparse neural net-
work can promise a specified sparsity rate, releasing the
efforts of complex hyperparameter tuning.

3. Accurate and optimal. With the optimized sparsity al-
location, we can fully unleash the sparsity potential of
each layer in the network and thus generate more accu-
rate sparse models under the same global sparsity rate.

4. Simple and general. FCPTS is easy to implement as a
plugin and generalizes on various neural network archi-
tectures (ResNet, MobileNet, RegNet, ViT) and tasks
(CIFAR-10/100, ImageNet, and PASCAL VOC).

Related Works
Model sparsity dates back decades of years to (1995) which
proved that pruning weights based on magnitude was a sim-
ple and powerful approach. Nowadays, there are two types
of sparsity: structural and non-structural sparsity. In this pa-
per, we focus on the latter one which has a more general for-
mat. As for the non-structural sparse models, current meth-
ods are mostly based on retraining. Only a few methods spar-
sify a trained model in the post-training scheme.

Retraining-based and Post-training Sparsity. Vari-
ous retraining-based methods are proposed in the litera-
ture (Ström 1997; Han et al. 2015; Molchanov, Ashukha,
and Vetrov 2017; Frankle and Carbin 2019; Renda, Frankle,
and Carbin 2020; Narang et al. 2017; Guo et al. 2020; Guo,
Xu, and Ouyang 2023; Huang et al. 2023) to improve the ac-
curacy. Although some of them may show promise, they of-
ten require extensive training or tuning of hyper-parameters,
leading to inefficiency and slow convergence. Recently, a
post-training sparsity method (Lazarevich, Kozlov, and Ma-
linin 2021) was proposed, achieving around 50% sparsity
rate without significant accuracy degradation. However, its
accuracy decreases sharply at higher sparsity levels.

Uniform and Non-uniform Sparsity. The sparsity alloca-
tion methods can be categorized as uniform sparsity and
non-uniform sparsity. Uniform sparsity methods (Mostafa
and Wang 2019; Lin et al. 2020; Gale, Elsen, and Hooker
2019) allocate the same sparsity rate for all the layers, while
non-uniform ones assign lower sparsity rates to sensitive
layers. Although empirical methods (Evci et al. 2020; Fran-
kle and Carbin 2019; Renda, Frankle, and Carbin 2020) have
been used to achieve non-uniform sparsity, they cannot guar-
antee optimal results as the pruning threshold and sparsity
allocation are not jointly learned. Thus there are also meth-
ods that aim to learn sparsity by optimizing the mask or
pruning threshold, but they all require a long training time
and do not work well in post-training settings.

Fast and Controllable
Post-training Sparsity Framework

In this section, we introduce our Fast and Controllable Post-
training Sparsity (FCPTS) framework. We first define the
controllable sparsity reconstruction objective, and then de-
sign a differentiable sparsity allocation method without dis-
turbing the trained weights. Based on these, the optimal
sparsity allocation can be easily learned.

Layer 1

Layer k

Layer k-1

…

Dense Model Sparse Model

Layer 1

Layer k

Layer k-1

Reconstruction Loss:
𝐿!"# = 𝐷$%(𝑌&"'("||𝑌()*!(")

…

Sparsity Control Loss:
𝐿# = | ∑ !!,!"

∑ ,!!
− 𝑟-|

𝑾
prune by

𝑾"

𝑟 = 	+ 𝑝 𝑤 𝑑(𝑤)
.

/.

𝑟!: 50%

𝑟"#!: 80%

𝑟": 40%

threshold 𝑡

𝑡

0!
0.
= 𝑝 𝑡 + 𝑝(−𝑡)

…

+

Differentiable Sparsity Allocation

Controllable Sparsity Reconstruction

𝑌&"'(" 𝑌()*!("

Fast and Controllable Post-training Sparsity Framework

differentiable backward propagation

Learning

forward
backward

Figure 2: An overview of our fast and controllable post-training sparsity (FCPTS) framework. The differentiable sparsity al-
location transfers the learning of the sparsity rate to the threshold by a differentiable estimation, and the controllable sparsity
reconstruction enables an optimized network with a specified global sparsity rate. Both components contribute to the final
excellent performance.

Preliminary
Mask Generation. Usually, magnitude-based methods have
been proven to be simple and effective metrics for mask se-
lection, which can be formulated as follows:

M = 0.5 ∗ sgn(|W | − t) + 0.5, (1)

where sgn is the sign function which returns +1 for positive
values and otherwise returns −1. t is a threshold for pruning
weights. Then the sparse model’s output can be derived by:

Ysparse = f(X,M ⊙W). (2)

where f denotes the neural network. The mask generation
method in Equation 1 implies the fact that weights with
larger magnitudes have higher importance for accuracy. This
assertion indeed holds for weights in an individual layer.

However, for weights across layers in the whole network,
we can not compare them directly due to the huge differ-
ence in weight norm. In other words, different layers also
have different contributions to the final accuracy. To this end,
finding the most suitable sparsity rate for each layer becomes
important, especially for the post-training scenario.

Controllable Sparsity Reconstruction
In this part, we present our formulation for controllable spar-
sity reconstruction, which defines the optimization objective
of our FCPTS framework. It incorporates a control loss to
achieve a target sparsity rate and employs reconstruction su-
pervision to minimize the difference between the sparse out-
put and dense counterpart.

First, we will introduce the control loss. As mentioned
earlier, existing methods mainly use regularization to adjust
the weight magnitude, then indirectly influence the sparsity
rate. This results in a complicated process to achieve the de-
sired sparsity rate and prevents us from efficiently obtaining

a sparse neural network in a limited time. To address this
problem, we construct a control loss as defined as:

Lc = |
∑

i riNi∑
i Ni

− r0|, (3)

where the ri denotes the sparsity rate and Ni is element
number of weights of the ith layer. r0 is the global spar-
sity rate target and Lc is the loss for controlling the global
sparsity rate. With this objective Lc, we can reach the target
sparsity rate r0 without complex hyperparameter tuning.

Furthermore, accompanied by the control loss, we employ
a weight reconstruction technique, commonly used in post-
training quantization (Wei et al. 2022a), to reduce the differ-
ence between sparse and dense output.

Lrec = DKL(Ydense∥Ysparse), (4)

DKL(·) represents the Kullback–Leibler divergence func-
tion. Under the supervision of the reconstruction loss Lrec,
the weight optimization will be guided in a direction that
contributes to a sparse output closely resembling the dense
output and naturally a higher accuracy. What’s more, the
overall reconstruction is based on the well-trained dense
weights, and thus the process is fast and easy to converge.

Finally, we combine Lc and Lrec to determine the appro-
priate sparsity rate for each layer while also making minor
adjustments to the weights to accommodate the sparsity. The
overall optimization objective can be defined as:

L = Lrec + Lc, (5)

Guided by the whole objective, we can find the reconstructed
weight W and sparsity rate ri of each layer that best suits
the target sparsity rate r0.

argmin
W ,ri

L (6)

Differentiable Sparsity Allocation
After the above optimization objective is defined, we need to
make the optimization process possible. To realize this, an
ingenious bridge function is designed to calculate the spar-
sity rate r from the magnitude threshold t. The derivative
of this bridge function can be calculated by kernel density
estimation. Then the differentiable optimization of sparsity
allocation can be achieved by transferring the optimization
to t. With the optimal t of each layer being learned, the spar-
sity rate r of each layer can be obtained.

Given a specific layer l, the derivative of L with respect to
rl is needed to fulfill the differentiable sparsity learning.

∂L

∂rl
=

∂Lrec

∂rl
+

∂Lc

∂rl
. (7)

For the latter part of Equation 7, it can be easily obtained
according to Equation 3.

∂Lc

∂rl
=

{
Nl∑
i Ni

, if
∑

i riNi∑
i Ni

> r0,

− Nl∑
i Ni

, otherwise.
(8)

Then we mainly focus on the former part.

∂Lrec

∂rl
=

∂Lrec

∂Ml
· ∂Ml

∂tl
· ∂tl
∂rl

(9)

Combined with Equation 1, Equation 2, and Equation 4, the
first two items ∂Lrec

∂Ml
and ∂Ml

∂tl
are easy to calculate. Thereby

the core problem is to calculate ∂tl
∂rl

. If we can find a differen-
tiable function g that lets tl = g(rl). Then the computation
of Equation 9 will be feasible.

Bridge function g−1 from tl to rl: Unfortunately, a dif-
ferentiable g is hard to construct. But the inverse function
g−1 can be formalized in a format with differentiable esti-
mation. Then we can transfer the learning of sparsity rate r
to threshold t. Given a weight distribution Wl of layer l and
its probability density function (PDF) p, w is sampled from
the distribution and then the sparsity rate rl can be got by:

rl =

∫ tl

−tl

p(w)d(w) = g−1(tl). (10)

Thus the derivative of tl with respect to rl can be written
as:

∂rl
∂tl

= p(tl) + p(−tl). (11)

Differentiable Estimation: From Equation 11, the key
step to calculate the derivative is modeling the probability
distribution p. To this end, we utilize the kernel density esti-
mation (KDE) method to estimate the PDF p.

p(w) =
1

n

n∑
i

Kh(w − wi) =
1

nh

n∑
i

K(
w − wi

h
). (12)

where K is a non-negative kernel function. n is the num-
ber of sampled points. h > 0 is a smoothing parameter
called the bandwidth. A kernel with subscript h is called
the scaled kernel and defined as Kh(w) = 1

hK(wh). Intu-
itively we want to choose h as small as the data will allow.

𝑝(−𝑡!) 𝑝(𝑡!)

−𝑡! 𝑡!

Figure 3: Explanation of bridge function g−1 from threshold
tl to sparsity rl (Equation 10). The area of the shading region
equals the sparsity rate rl. The derivative of r with respect
to t can be represented as p(−tl) + p(tl).

However, there is always a trade-off between the bias of the
estimator and its variance. Here we adopt a commonly used
setting: n = 100, h = 0.5 and K(x) = Φ(x), where Φ is the
standard normal density function. With this KDE technique,
the bridge function is proved to be differentiable.

Transfer the learning of r to t: Equipped with the above
bridge function and differentiable estimation, we can opti-
mize the sparsity rate r via the proxy variable t:

∂Lc

∂tl
=

∂Lc

∂rl
· ∂rl
∂tl

. (13)

According to Equation 8, Equation 11 and Equation 12, the
derivative of Lc with respect to tl can be obtained. As for the
reconstruction loss, the derivative of Lrec with respect to tl
can also be directly calculated:

∂Lrec

∂tl
=

∂Lrec

∂Ml
· ∂Ml

∂tl
. (14)

Finally, with the learned threshold t and bridge function
Equation 10, we can calculate the exact r, contributing to the
flexible and controllable learning of sparsity allocation.

Discussion
Benefiting from the controllable and differentiable sparsity
allocation, our FCPTS performs well for the post-training
scenario and can reconstruct a sparse neural network with
high accuracy as quickly as possible.

Superiority over existing retraining-based non-uniform
methods. STR (2020) utilizes Ŵ = relu(W−t) to learn the
threshold t. However, for weights > t, the original weight
value will be damaged (subtracted by t), hindering the fast
accuracy recovery. In contrast, our method will fully utilize
the dense weights without damaging their original distribu-
tion, contributing to an effective post-training reconstruc-
tion. Also STR can not constrain the global sparsity rate
into the target value we want. Without careful regulariza-
tion tuning, the sparsity rate could quickly spiral out of con-
trol. ProbMask (Zhou et al. 2021) optimizes the mask with

Sparsity Rate(%)Method 50 60 70
POT 70.1/90.12 68.40/89.10 63.72/86.51
STR % % %

ProbMask 51.97/79.65 49.64/78.19 46.99/76.29

Table 1: Top1/Top5 accuracy of ResNet-18 on ImageNet
with different sparsity rates. The traditional learning-based
non-uniform sparsity methods fail to work well for the post-
training setting, either crashing or converging unstably.

Algorithm 1: FCPTS Framework.
Input: Calibration dataset D, target sparsity rate r0,

a well-trained dense network with weight W .
for d ∈ D do

{1. Forward propagation:}
M = 0.5 ∗ sgn(|W | − t) + 0.5,
Ŵ = M ⊙W ,
Ydense = f(X,W),Ysparse = f(X, Ŵ),
Calculate the Lrec by Equation 4;
Obtain the sparsity rate r by t using Equation 10,
Calculate the Lc by Equation 3;
Get the overall L = Lrec + Lc.
{2. Backward propagation:}
Calculate p(w) by kernel density estimation in
Equation 12,

Obtain the derivative of rl with respect to tl by
Equation 11,

Compute the gradient of t by Equation 8 and
Equation 9,

Adjust the weight and sparsity rate by gradient
descent ;

return sparse networks with target sparsity rate r0 ;

Gumbel Softmax trick. The large optimization space and
the stochastic optimization method require extensive steps
and huge GPU memory to stably converge. For post-training
sparsity, ProbMask is unstable and usually fails to converge
to a good solution in a limited time. Table 1 illustrates ex-
perimental evidence about the poor performance of existing
methods under the PTS setting. The two retraining-based
methods STR and ProbMask even underperform the naive
post-training method POT (Lazarevich, Kozlov, and Malinin
2021).

Efficiency. FCPTS enjoys high efficiency since it reaches
the target sparsity rate with only one pass of net-wise recon-
struction, instead of layer-by-layer progressive optimization
in POT. Usually, it can generate sparse neural networks in
dozens of minutes using just one NVIDIA RTX 3090 GPU.
The overall pipeline is summarized in Algorithm 1.

Experiment
In this section, we conduct a series of experiments to eval-
uate the effect of FCPTS. We first conduct extensive ex-
periments on image classification and object detection to
compare with existing methods. Then in-depth analyses are

given to reveal the internal superiority of our method.

Results on Various Tasks
We conduct comprehensive validations on four datasets cov-
ering image classification (CIFAR-10/100 (Krizhevsky, Hin-
ton et al. 2009), ImageNet (Russakovsky et al. 2015)) and
object detection (PASCAL VOC (Everingham et al. 2010)).
The CIFAR-10 dataset consists of 50K training images and
10K testing images of size 32×32 with 10 classes. ImageNet
ILSVRC12 contains about 1.2 million training images and
50K testing images with 1,000 classes. The PASCAL VOC
is a widely used object detection dataset containing 20 ob-
ject categories. Each image in this dataset has bounding box
annotations and object class annotations.
Baseline Setting. We choose the only PTS method
POT (Lazarevich, Kozlov, and Malinin 2021) as our base-
line. The calibration dataset contains 10k images. Also, we
reproduced some techniques originally designed for retrain-
ing, i.e., the heuristic non-uniform sparsity method ERK in
POT, and ProbMask under the PTS setting.
Network Structures. We employ the widely-used network
structures including ResNet-32/56 for CIFAR-10/CIFAR-
100, and ResNet-18/50 (He et al. 2016), MobileNetV2 (San-
dler et al. 2018), RegNet-200M/400M (Radosavovic et al.
2020), Vit-Base/Large (Dosovitskiy et al. 2021) for Ima-
geNet, and MobileNetV1 SSD, MobileNetV2 SSD-lite (Liu
et al. 2016) for PASCAL VOC.

CIFAR-10/CIFAR-100 Table 2 clearly shows that our
method outperforms the baselines. As the sparsity increases,
the superiority becomes even more significant. The baseline
method degrades rapidly at an 80% sparsity and collapses
completely at 90% or earlier. In contrast, our FCPTS re-
mains stable at a very high accuracy even at a sparsity of
90%. This is particularly evident in the CIFAR-100 dataset.

ImageNet The accuracy results for various sparsity rates
on ImageNet are presented in Table 3. Our method is shown
to outperform the baseline with a significant margin across
all models, particularly at sparsity rates exceeding 70%.
Notably, at a sparsity rate of 70%, our method achieves
accuracy levels almost similar to its dense counterpart on
ResNet-18 and ResNet-50 (with a mere 2% degradation),
while existing methods experience a significant accuracy
loss of near 10%. For mobile-friendly architectures like Reg-
Net and MobileNet, existing methods encounter unaccept-
able accuracy decreases under 60% sparsity, whereas our
method can improve by 3%-8%. These results provide de-
tailed evidence of the advantages of our proposed method.
Furthermore, we tested the effect on ViT models in Table
4. The consistent improvement proves that our FCPTS also
generalizes for attention-based architectures.

PASCAL VOC We report the detailed accuracy from two
variants of SSD at the sparsity rate 90% in Table 5. Com-
pared with the POT using L2-normalization magnitude and
ERK sparsity rate allocation algorithm, our FCPTS can get
a significant improvement under this extreme conditions of
90% sparsity rate. For the sparse MobileNetV1 SSD, the
mAP of our FCPTS only drops a little. For the compressed

Model Method CIFAR-10 CIFAR-100
70 80 90 70 80 90

ResNet-32
POT (L2Norm) 91.06/99.64 84.80/98.85 20.09/71.73 59.35/86.47 28.98/63.09 3.01/11.55

POT (ERK) 90.95/99.62 84.91/98.59 21.87/74.36 56.21/84.71 29.50/62.64 4.66/14.30
Ours 92.91/99.77 92.36/99.73 90.35/99.65 69.14/91.07 68.28/90.87 63.35/89.38

ResNet-56
POT (L2Norm) 93.01/99.74 87.18/98.83 28.21/72.24 64.63/88.90 36.19/69.07 4.41/13.00

POT (ERK) 92.84/99.70 87.03/98.47 37.70/70.33 62.65/88.16 36.96/69.44 5.88/17.37
Ours 94.07/99.83 93.67/99.78 92.02/99.78 72.16/92.02 71.09/91.90 68.07/90.51

Table 2: Comparison of the Top1/Top5 accuracy (%) on ResNet-32/56 under different sparsity rates on dataset CIFAR-10/100.
The accuracies (%) of dense ResNet-32 on dataset CIFAR-10/100 are 93.53/99.77 and 70.16/90.89, respectively. The accuracies
(%) of dense ResNet-56 on dataset CIFAR-10/100 are 94.37/99.83 and 72.63/91.94, respectively.

Model Method Sparsity Rate (%)
50 60 70 80 90

ResNet-18
70.88/90.45

POT (L2Norm) 70.06/89.12 68.40/89.10 63.72/86.51 44.94/71.51 6.03/15.70
POT (ERK) 69.66/89.40 68.24/88.62 64.28/86.40 50.78/75.59 5.66/15.81
ProbMask 51.97/79.65 49.64/78.19 46.99/76.29 42.58/72.58 32.88/64.33

Ours 70.07/89.61 69.58/89.37 68.50/88.89 65.83/87.69 57.40/83.37

ResNet-50
77.89/93.762

POT (L2Norm) 76.83/93.81 75.24/93.22 68.74/89.44 17.03/30.31 0.13/0.42
POT (ERK) 75.43/92.51 72.38/90.89 63.76/84.74 22.92/42.13 0.17/1.25
ProbMask 49.34/78.42 47.42/76.88 44.50/74.95 39.47/70.97 28.40/60.22

Ours 77.43/93.55 76.69/93.38 75.38/92.87 71.26/91.23 56.91/84.86

RegNetX-200M
68.41/89.11

POT (L2Norm) 64.69/87.08 59.98/84.40 48.36/75.86 24.48/49.90 2.02/7.42
POT (ERK) 64.54/86.44 60.71/84.40 52.97/79.46 31.56/60.02 1.36/4.83
ProbMask 50.23/77.66 47.67/75.97 44.61/73.71 39.43/69.78 29.87/60.26

Ours 66.57/87.30 65.30/86.73 62.80/85.32 57.44/82.37 40.90/71.47

RegNetX-400M
71.84/90.55

POT (L2Norm) 67.54/88.62 65.68/87.73 56.63/81.66 28.55/54.41 2.32/7.87
POT (ERK) 69.97/89.59 67.07/88.25 60.40/84.22 37.10/65.71 1.23/3.53
ProbMask 48.84/77.17 46.25/75.54 43.20/73.15 38.59/69.14 30.30/60.96

Ours 70.85/90.17 70.09/89.73 68.27/89.13 64.23/87.15 50.00/78.97

MobileNetV2
72.85/91.61

POT (L2Norm) 65.51/87.31 57.95/81.35 21.60/44.53 0.22/1.47 0.10/0.55
POT (ERK) 69.80/89.66 64.98/87.14 49.14/76.25 9.75/25.30 0.21/0.77
ProbMask 30.24/63.68 25.15/57.52 18.92/48.66 11.76/35.48 4.41/16.75

Ours 70.52/90.07 68.10/89.16 61.18/86.04 40.20/74.28 13.99/39.75

Table 3: Comparison of the Top1/Top5 accuracy (%) on various CNNs under different sparsity rates on ImageNet dataset. The
accuracy (%) of the dense model is listed under the architecture of the model.

Model Method Sparsity Rate (%)
50 60 70

ViT base
75.68/92.94

POT(L2Norm) 62.08/83.92 53.63/77.08 29.96/53.16
POT(ERK) 68.04/89.91 61.67/71.48 30.50/55.30

Ours 74.90/92.99 72.09/91.47 65.24/87.74

ViT large
79.29/94.78

POT(L2Norm) 77.11/93.91 75.33/93.06 70.42/90.78
POT(ERK) 77.46/94.22 75.64/93.33 71.02/91.23

Ours 78.13/94.41 76.71/93.73 73.01/92.07

Table 4: Comparison of the Top1/Top5 accuracy (%) on ViT
models under different sparsity rates on ImageNet dataset.

Model Method mAP (%)
POT (L2Norm) 48.5

POT (ERK) 54.6MobileNetV1 SSD
67.7 Ours 65.1

POT (L2Norm) 16.4
POT (ERK) 0.3MobileNetV2 SSD-Lite

68.6 Ours 59.1

Table 5: Comparison on PASCAL VOC at 90% sparsity.

MobileNetV2 SSD-Lite model, our FCPTS can get 59.1%
mAP while the performances of other methods crash.

Effect of Learnable Sparsity

In this section, we study how the learnable sparsity con-
tributes to the final performance. We just initialize the spar-
sity allocation of models with ERK and fix the sparsity rates
of all layers, then reconstruct with or without learning the
sparsity rate. We conducted this experiment on three mod-
els, ResNet-50, RegNetX-400M, and MobileNetV2. Figure
4 shows that models with learnable sparsity can get higher
accuracy compared with models without learnable sparsity.
This gap in accuracy is more pronounced at high spar-
sity rates, e.g., about 10% improvement for RegNetX-400M
under the sparsity rate of 80%. This experiment strongly
demonstrates that the learnable sparsity with a global con-
straint can dynamically optimize the sparsity allocation to
make it more reasonable and rescue it from some unexpected
sparsity allocation traps.

70 80 90
Sparsity Rate (%)

0

10

20

30

40

50

60

70

A
cc

ur
ac

y
(%

)
ResNet-50
RegNetX-400M
MobileNetV2

Fix Learn

Figure 4: The effect of learnable sparsity. For each neural
network, the left dash bars are results with fixed sparsity rate
and the right bars are results with learned sparsity rate.

1 2 3 4 5
10 2

10 1

100

R
em

ai
ni

ng
 R

at
io

ResNet-18

1 2 3 4 5 6 7
10 2

10 1

100
ResNet-50

1 2 3 4 5 6
10 2

10 1

100

R
em

ai
ni

ng
 R

at
io

ResNet-32

1 2 3 4 5 6 7
10 2

10 1

100
ResNet-56

POT (L2Norm) POT (ERK) Ours

Figure 5: Visualization of the optimized sparsity allocation
at a sparsity rate of 90%. ResNet-18 and ResNet-50 are on
ImageNet, ResNet-32 and ResNet-56 are on CIFAR-100.

Sparsity Allocation Analyses
In Figure 5, we prove the effectiveness of FCPTS which can
lead to more reasonable sparsity allocation. The optimized
sparsity allocation for 4 models reconstructed on the Ima-
geNet and CIFAR-100 datasets is presented. It can be found
that our method effectively learns to allocate lower sparsity
for the latter layers and increase sparsity for some other lay-
ers to reach the global sparsity rate target. Additionally, the
first layer exhibits a relatively high sparsity rate, in align-
ment with experience in previous works. Without the learned
allocation, the other two methods tend to exceed the sparsity
tolerance and suffer a huge accuracy crash.

Method Dataset Model Time (min)
CIFAR-100 ResNet-32 31POT ImageNet ResNet-18 100
CIFAR-100 ResNet-32 9Ours ImageNet ResNet-18 29

Table 6: Efficiency for generating a sparse neural network.

Model Sparsity
rate (%)

Latency
(ms)

Speed
up

Memory
(MB)

dense 18.194 - 11.632
50 10.796 1.695 7.640
60 9.287 1.959 6.530ResNet-18
70 7.599 2.394 5.245

dense 33.936 - 6.207
50 28.387 1.195 6.488
60 28.157 1.205 5.686MobileNetV2
70 26.863 1.263 5.235

Table 7: Inference performance of sparse ResNet-18 and
MobileNetV2 on CV22, a hardware of autonomous driving.

Efficiency

To present the high efficiency of our method, we collect the
reconstruction time cost to obtain a sparse neural network
and evaluate the inference speed on the real hardware.
Reconstruction Efficiency. Since FCPTS obeys the orig-
inal weight distribution of the dense model, it can fully
take advantage of the historical training efforts. Besides,
it directly adopts net-wise optimization on a reduced opti-
mization space (i.e., threshold) without any randomness and
without complex layer-wise calculation for MSE. So it can
converge quickly and stably. More importantly, the control-
lable sparsity rate enables us to reach the target without re-
peated hyper-parameter tunings. From Table 6, we can see
that our FCPTS for the first time pushes the time for gener-
ating ImageNet sparse models into minutes while the exist-
ing state-of-the-art method POT requires over one and a half
hours. Our framework enjoys a 3 times speedup.
Inference Efficiency. We also test the inference perfor-
mance of the models sparsified by FSPTS on Ambarella
CV22, an autonomous driving chip supporting the accelera-
tion of unstructured sparsity. As seen in Table 7, benefiting
from the sparsity, both inference latency and memory oc-
cupation are significantly reduced. This gain is especially
remarkable for the ResNet-18, which achieves nearly 2.4x
speedup and over 50% memory saving at 70% sparsity.

Conclusion
In this paper, we propose a fast and controllable post-
training sparsity (FCPTS) framework that pushes the limit
of PTS accuracy to a new level. It utilizes a differentiable es-
timation to enable a learnable and controllable sparsity rate.
Benefiting from the optimal sparsity allocation, our FCPTS
achieves state-of-the-art results on 4 different datasets cov-
ering classification and object detection tasks.

Acknowledgments
This work was supported in part by the National Key Re-
search and Development Plan of China (2022ZD0116405),
the National Natural Science Foundation of China (No.
62206010, No.62022009, No. 62306025), and the State
Key Laboratory of Software Development Environment
(SKLSDE-2022ZX-23).

References
Azarian, K.; Bhalgat, Y.; Lee, J.; and Blankevoort, T.
2020. Learned threshold pruning. arXiv preprint
arXiv:2003.00075.
Dosovitskiy, A.; Beyer, L.; Kolesnikov, A.; Weissenborn,
D.; Zhai, X.; Unterthiner, T.; Dehghani, M.; Minderer, M.;
Heigold, G.; Gelly, S.; Uszkoreit, J.; and Houlsby, N. 2021.
An Image is Worth 16x16 Words: Transformers for Image
Recognition at Scale. In International Conference on Learn-
ing Representations.
Evci, U.; Gale, T.; Menick, J.; Castro, P. S.; and Elsen, E.
2020. Rigging the Lottery: Making All Tickets Winners.
In III, H. D.; and Singh, A., eds., Proceedings of the 37th
International Conference on Machine Learning, volume 119
of Proceedings of Machine Learning Research, 2943–2952.
PMLR.
Everingham, M.; Gool, L. V.; Williams, C. K. I.; Winn,
J. M.; and Zisserman, A. 2010. The Pascal Visual Object
Classes (VOC) Challenge. Int. J. Comput. Vis., 88(2): 303–
338.
Frankle, J.; and Carbin, M. 2019. The Lottery Ticket Hy-
pothesis: Finding Sparse, Trainable Neural Networks. In In-
ternational Conference on Learning Representations.
Gale, T.; Elsen, E.; and Hooker, S. 2019. The state
of sparsity in deep neural networks. arXiv preprint
arXiv:1902.09574.
Gong, R.; Liu, X.; Jiang, S.; Li, T.; Hu, P.; Lin, J.; Yu, F.;
and Yan, J. 2019. Differentiable Soft Quantization: Bridging
Full-Precision and Low-Bit Neural Networks. In The IEEE
International Conference on Computer Vision (ICCV).
Gopalakrishnan, S.; Marzi, Z.; Madhow, U.; and Pedarsani,
R. 2018. Combating adversarial attacks using sparse repre-
sentations. arXiv preprint arXiv:1803.03880.
Guo, J.; Xu, D.; and Ouyang, W. 2023. Multidimensional
Pruning and Its Extension: A Unified Framework for Model
Compression. IEEE Transactions on Neural Networks and
Learning Systems.
Guo, J.; Zhang, W.; Ouyang, W.; and Xu, D. 2020. Model
compression using progressive channel pruning. IEEE
Transactions on Circuits and Systems for Video Technology.
Han, S.; Pool, J.; Tran, J.; and Dally, W. 2015. Learning
both weights and connections for efficient neural network.
Advances in neural information processing systems, 28.
He, K.; Zhang, X.; Ren, S.; and Sun, J. 2016. Deep Resid-
ual Learning for Image Recognition. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recogni-
tion (CVPR).

Hinton, G.; Vinyals, O.; and Dean, J. 2015. Distill-
ing the knowledge in a neural network. arXiv preprint
arXiv:1503.02531.
Hoefler, T.; Alistarh, D.; Ben-Nun, T.; Dryden, N.; and
Peste, A. 2021. Sparsity in Deep Learning: Pruning and
growth for efficient inference and training in neural net-
works. arXiv:2102.00554 [cs]. ArXiv: 2102.00554.
Hu, W.; Che, Z.; Liu, N.; Li, M.; Tang, J.; Zhang, C.; and
Wang, J. 2023. : Channel Pruning via Class-Aware Trace
Ratio Optimization. IEEE Transactions on Neural Networks
and Learning Systems.
Huang, Y.; Liu, N.; Che, Z.; Xu, Z.; Shen, C.; Peng, Y.;
Zhang, G.; Liu, X.; Feng, F.; and Tang, J. 2023. CP3: Chan-
nel Pruning Plug-In for Point-Based Networks. In Proceed-
ings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR), 5302–5312.
Jacob, B.; Kligys, S.; Chen, B.; Zhu, M.; Tang, M.; Howard,
A.; Adam, H.; and Kalenichenko, D. 2018. Quantization and
training of neural networks for efficient integer-arithmetic-
only inference. In Proceedings of the IEEE conference on
computer vision and pattern recognition, 2704–2713.
Krizhevsky, A.; Hinton, G.; et al. 2009. Learning multiple
layers of features from tiny images.
Kusupati, A.; Ramanujan, V.; Somani, R.; Wortsman, M.;
Jain, P.; Kakade, S.; and Farhadi, A. 2020. Soft Threshold
Weight Reparameterization for Learnable Sparsity. In Pro-
ceedings of the International Conference on Machine Learn-
ing.
Lazarevich, I.; Kozlov, A.; and Malinin, N. 2021. Post-
training deep neural network pruning via layer-wise calibra-
tion. ArXiv:2104.15023 [cs].
Lee, J.; Park, S.; Mo, S.; Ahn, S.; and Shin, J. 2021. Layer-
adaptive Sparsity for the Magnitude-based Pruning. In In-
ternational Conference on Learning Representations.
Li, Y.; Gong, R.; Tan, X.; Yang, Y.; Hu, P.; Zhang, Q.; Yu, F.;
Wang, W.; and Gu, S. 2021a. {BRECQ}: Pushing the Limit
of Post-Training Quantization by Block Reconstruction. In
International Conference on Learning Representations.
Li, Y.; Shen, M.; Ma, J.; Ren, Y.; Zhao, M.; Zhang, Q.; Gong,
R.; Yu, F.; and Yan, J. 2021b. MQBench: Towards Repro-
ducible and Deployable Model Quantization Benchmark. In
Thirty-fifth Conference on Neural Information Processing
Systems Datasets and Benchmarks Track (Round 1).
Lin, T.; Stich, S. U.; Barba, L.; Dmitriev, D.; and Jaggi, M.
2020. Dynamic Model Pruning with Feedback. In Interna-
tional Conference on Learning Representations.
Liu, N.; Ma, X.; Xu, Z.; Wang, Y.; Tang, J.; and Ye, J. 2020.
Autocompress: An automatic dnn structured pruning frame-
work for ultra-high compression rates. In Proceedings of
the AAAI Conference on Artificial Intelligence, volume 34,
4876–4883.
Liu, N.; Yuan, G.; Che, Z.; Shen, X.; Ma, X.; Jin, Q.; Ren,
J.; Tang, J.; Liu, S.; and Wang, Y. 2021. Lottery Ticket Pre-
serves Weight Correlation: Is It Desirable or Not? In In-
ternational Conference on Machine Learning, 7011–7020.
PMLR.

Liu, W.; Anguelov, D.; Erhan, D.; Szegedy, C.; Reed, S.; Fu,
C.-Y.; and Berg, A. C. 2016. SSD: Single Shot MultiBox
Detector. In ECCV.
Molchanov, D.; Ashukha, A.; and Vetrov, D. 2017. Vari-
ational dropout sparsifies deep neural networks. In In-
ternational Conference on Machine Learning, 2498–2507.
PMLR.
Mostafa, H.; and Wang, X. 2019. Parameter efficient
training of deep convolutional neural networks by dynamic
sparse reparameterization. In Chaudhuri, K.; and Salakhut-
dinov, R., eds., Proceedings of the 36th International Con-
ference on Machine Learning, volume 97 of Proceedings of
Machine Learning Research, 4646–4655. PMLR.
Narang, S.; Diamos, G.; Sengupta, S.; and Elsen, E. 2017.
Exploring Sparsity in Recurrent Neural Networks. In Inter-
national Conference on Learning Representations.
Radosavovic, I.; Kosaraju, R. P.; Girshick, R.; He, K.; and
Dollár, P. 2020. Designing network design spaces. In Pro-
ceedings of the IEEE/CVF conference on computer vision
and pattern recognition, 10428–10436.
Renda, A.; Frankle, J.; and Carbin, M. 2020. Comparing
fine-tuning and rewinding in neural network pruning. In In-
ternational Conference on Learning Representations.
Russakovsky, O.; Deng, J.; Su, H.; Krause, J.; Satheesh, S.;
Ma, S.; Huang, Z.; Karpathy, A.; Khosla, A.; Bernstein, M.;
et al. 2015. Imagenet large scale visual recognition chal-
lenge. International journal of computer vision, 115: 211–
252.
Sandler, M.; Howard, A.; Zhu, M.; Zhmoginov, A.; and
Chen, L.-C. 2018. MobileNetV2: Inverted Residuals and
Linear Bottlenecks. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition (CVPR).
Ström, N. 1997. Sparse connection and pruning in large dy-
namic artificial neural networks. In Fifth European Confer-
ence on Speech Communication and Technology. Citeseer.
Tan, M.; Chen, B.; Pang, R.; Vasudevan, V.; Sandler, M.;
Howard, A.; and Le, Q. V. 2019. Mnasnet: Platform-aware
neural architecture search for mobile. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recogni-
tion, 2820–2828.
Thimm, G.; and Fiesler, E. 1995. Evaluating pruning meth-
ods. In Proceedings of the International Symposium on Ar-
tificial neural networks, 20–25.
Wei, X.; Gong, R.; Li, Y.; Liu, X.; and Yu, F. 2022a. QDrop:
Randomly Dropping Quantization for Extremely Low-bit
Post-Training Quantization. In International Conference on
Learning Representations.
Wei, X.; Zhang, Y.; Zhang, X.; Gong, R.; Zhang, S.; Zhang,
Q.; Yu, F.; and Liu, X. 2022b. Outlier Suppression: Push-
ing the Limit of Low-bit Transformer Language Models. In
Thirty-Sixth Conference on Neural Information Processing
Systems.
Yuan, G.; Ma, X.; Niu, W.; Li, Z.; Kong, Z.; Liu, N.; Gong,
Y.; Zhan, Z.; He, C.; Jin, Q.; et al. 2021. Mest: Accurate
and fast memory-economic sparse training framework on
the edge. Advances in Neural Information Processing Sys-
tems, 34: 20838–20850.

Zhou, X.; Zhang, W.; Xu, H.; and Zhang, T. 2021. Effec-
tive sparsification of neural networks with global sparsity
constraint. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, 3599–3608.
Zhu, F.; Gong, R.; Yu, F.; Liu, X.; Wang, Y.; Li, Z.; Yang,
X.; and Yan, J. 2020. Towards Unified INT8 Training for
Convolutional Neural Network. In The IEEE Conference on
Computer Vision and Pattern Recognition (CVPR).

