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Abstract

Lane detection (LD) plays a crucial role in enhancing the L2+
capabilities of autonomous driving, capturing widespread at-
tention. The Post-Processing Quantization (PTQ) could fa-
cilitate the practical application of LD models, enabling fast
speeds and limited memories without labeled data. However,
prior PTQ methods do not consider the complex LD outputs
that contain physical semantics, such as offsets, locations,
etc., and thus cannot be directly applied to LD models. In
this paper, we pioneeringly investigate semantic sensitivity
to post-processing for lane detection with a novel Lane Dis-
tortion Score. Moreover, we identify two main factors impact-
ing the LD performance after quantization, namely intra-head
sensitivity and inter-head sensitivity, where a small quantiza-
tion error in specific semantics can cause significant lane dis-
tortion. Thus, we propose a Selective Focus framework de-
ployed with Semantic Guided Focus and Sensitivity Aware
Selection modules, to incorporate post-processing informa-
tion into PTQ reconstruction. Based on the observed intra-
head sensitivity, Semantic Guided Focus is introduced to pri-
oritize foreground-related semantics using a practical proxy.
For inter-head sensitivity, we present Sensitivity Aware Se-
lection, efficiently recognizing influential prediction heads
and refining the optimization objectives at runtime. Exten-
sive experiments have been done on a wide variety of models
including keypoint-, anchor-, curve-, and segmentation-based
ones. Our method produces quantized models in minutes on a
single GPU and can achieve 6.4% F1 Score improvement on
the CULane dataset. Code and supplementary statement can
at found on https://github.com/PannenetsF/SelectiveFocus.

Introduction
Deep neural networks have recently sparked great interest
in autonomous driving. As a fundamental component in au-
tonomous driving, lane detection (LD) is fundamental for
high-level functions such as lane departure warning, lane de-
parture prevention, etc. Lane detection (Qin, Wang, and Li
2020; Wang et al. 2022b; Tabelini et al. 2021) has garnered
significant attention and undergone in-depth research, lead-
ing to substantial advancements. However, LD models are
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often required to run on edge devices within limited sizes,
necessitating quantization and introducing formidable chal-
lenges to detection performance.

There are two prevalent quantization techniques: Quanti-
zation Aware Training (QAT) e.g. (Choi et al. 2018; Esser
et al. 2019; Bhalgat et al. 2020; Jain et al. 2020) and Post-
training Quantization (PTQ) e.g. (Hubara et al. 2020; Wu
et al. 2020a; Wei et al. 2022; Wang et al. 2022a). Though
QAT can often yield promising performance, it requires a
longer training duration and the whole labeled dataset, rais-
ing computation costs and safety concerns. In contrast, PTQ
methods have attracted wide attention from both industry
and academia due to their speed and label-free nature. Re-
cently, some PTQ methods (Nagel et al. 2020; Li et al. 2021;
Wei et al. 2022) propose to tune the weight by reconstructing
the original outputs, bringing better performance.

LD models typically regress semantic outputs with phys-
ical meanings such as offsets, locations, and angles, and
employ complex post-processing to handle these outputs.
Notably, the sensitivity of these semantic outputs to post-
processing varies, with certain elements having the poten-
tial to induce significant lane deformation even with minor
perturbations. Prior PTQ approaches employing direct re-
construction methods on feature maps treat all outputs uni-
formly, overlooking post-processing information.

In this paper, we first propose the semantic sensitivity
in lane detection models and introduce a Lane Distortion
Score to measure the quantization distortion between the
original LD model and the corresponding quantized coun-
terpart. Subsequently, we investigate these sensitivities from
two perspectives, namely the intra-head sensitivity and the
inter-head sensitivity. Specifically, the intra-head sensitiv-
ity highlights the heightened sensitivity of a limited num-
ber of foreground (lane) regions to quantization noise dur-
ing post-processing, while the inter-head sensitivity indi-
cates the varying degrees of sensitivity to the quantization
of different semantic heads over time, as shown in Figure 4.

To address the sensitivity problems above, we propose a
Selective Focus framework to alleviate the semantic sensi-
tivity in post-training quantization for LD models, enhanc-
ing the performance. The proposed framework is deployed
with a Semantic Guided Focus module and a Sensitivity
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Figure 1: The framework of Selective Focus. Three modules are designed to mine the semantics sensitivity in the post-training
quantized lane detection. Semantic Sensitivity Measuring measures the semantic sensitivity quantitatively; Sensitivity Aware
Selection adapts the optimization objectives according to dynamic sensitivity. Semantic Guided Focus enables PTQ to focus on
the foreground with a practical proxy.

Aware Selection module, respectively targeting the intra-
head sensitivity and the inter-head sensitivity. First, the Se-
mantic Guided Focus generates practical proxies of masks
from semantics, enhancing the precision of foreground lanes
in post-processing. This method guides PTQ to optimize
these pivotal areas. Furthermore, the Sensitivity Aware Se-
lection module refines optimization objectives by querying
efficiently the real-time sensitivity of each head through our
Lane Distortion Score across heads. The proposed frame-
work could tune the models efficiently by introducing the
semantic information of the post-process to the optimization
implicitly.

To the best of our knowledge, our work is the first to iden-
tify the role of semantic sensitivity in PTQ for lane detection
models, and we hope it could offer new insight to the com-
munity. Extensive experiments on the widely-used CULane
dataset and various leading methods validate the effective-
ness and efficiency of the proposed Selective Focus frame-
work. In summary, our contributions are listed as follows:

• We introduce the concept of semantics sensitivity in
post-processing quantization for lane detection, propos-
ing the Lane Distortion Score metric. Our Selective Fo-
cus framework, composed of the Semantic Guided Focus
and Sensitivity Aware Selection modules, addresses both
intra-head and inter-head sensitivities.

• Considering the intra-head semantics sensitivity, the Se-
mantic Guided Focus module generates practical proxy
masks from semantics and thus guides PTQ to optimize
these pivotal areas.

• Handling inter-head semantics sensitivity, the Sensitiv-
ity Aware Selection module efficiently adjusts optimiza-
tion objectives based on each head’s real-time sensitivity
measured by our Lane Distortion Score.

• Our empirical tests across datasets, models, and quanti-
zation setups endorse our approach’s efficacy. Notably,
under the 4-bit setup, performance gains exceed up to

6.4%, on benchmark models with a 6x acceleration.

Related Works
Lane Detection Models
The LD task aims to produce lane representations in the
given images. Despite the different methods, they all try to
set the foreground (lanes) apart from the background. Nowa-
days the models generally use Convolutional Neural Net-
works (CNNs) to extract lane features, which can be divided
into keypoint-based, anchor-based, segmentation-based, and
parameterized-curve-based methods.

Keypoint-based Methods predict the mask of lane points
and regress them to the real location on the corresponding
lanes. CondLaneNet (Liu et al. 2021a) regresses offset be-
tween adjacent key points, while GANet (Wang et al. 2022b)
regresses offset between each keypoint to the start point of
its lane. Anchor-based Methods model lanes as pre-defined
pairs of start point and angle, and then regress lanes among
them. LaneATT (Tabelini et al. 2021) proposes an anchor
attention module to aggregate global information for the re-
gression. CLRNet (Zheng et al. 2022) refines the propos-
als with features at different scales. Segmentation-based
Methods predict the mask of all the lanes on the image
and then cluster them into different lanes. SCNN (Pan et al.
2018) adopts slice-by-slice convolution modules to aggre-
gate surrounding spatial information. RESA (Zheng et al.
2021) further extends the mechanism to aggregate global
spatial to every pixel. Curve-based Methods model lanes
as singular curves, rather than sets of discrete points. For in-
stance, LSTR (Liu et al. 2021b) predicts the parameters for
cubic curves and BézierLaneNet (Feng et al. 2022) predicts
for Bézier curves.

Post-traning Quantization
Quantization is widely used in deep learning model deploy-
ment to substantially cut down memory and computation re-
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Figure 2: Example of confidence and semantics in post-
process. (a) The confidence is used to predict whether a key-
point is at a certain location. (b) The offset is regressed to
the shift between the real keypoint and its downscaled grid.
Offset is only valid in the indices with positive confidence
prediction.

quirements during inference, which is required by the LD
models. Compared to QAT (Jacob et al. 2018; Gong et al.
2019; Jain et al. 2020; Esser et al. 2019; Bhalgat et al. 2020)
which requires large GPU effort and the whole dataset, PTQ
methods have sparked great popularity these days due to
their speed and label-free property.

Common PTQ methods like OMSE (Choukroun et al.
2019) and ACIQ (Banner, Nahshan, and Soudry 2019) often
identify quantization parameters to minimize the quantized
error for tensors, requiring a few batches of forward passes.
More recently, some methods have evolved to slightly tune
the weights and reconstruct the original outputs. (Wu et al.
2020b) improves the accuracy by setting a well-defined tar-
get for the face recognition task. AdaRound (Nagel et al.
2020) initially proposes that adjusting the weight within a
small space can be beneficial, and their layer-wise output
reconstruction can yield more favorable results with only
a marginal increase in optimization time. Building on this,
BRECQ (Li et al. 2021) suggests that the outputs of each
layer still exhibit some disparity from the final outputs and
thus proposes adopting a block-wise reconstruction scheme.
Later, QDrop (Wei et al. 2022) investigates the activation
quantization under this setting and introduces random acti-
vation quantization dropping during tuning, which benefits
the performance.

We also opt for model tuning through reconstruction.
Nevertheless, prior techniques haven’t been applied to lane
detection models with multiple heads and complex post-
processing functions. We discover that directly reconstruct-
ing feature maps for these models overlooks the impor-
tant post-processing information, ultimately leading to sub-
optimal solutions.

Preliminaries
Notation
In the context of lane detection models, it’s important to note
that each head i encompasses two distinct functions: Si(·)
and Ci(·). The former function yields outputs with physical
significance, which we refer to as semantics. These seman-
tics are linked to physical attributes such as distance and
angle. The latter function, Ci(·), produces confidence out-
puts for each head’s semantics. An illustration of how the
post-process deals with confidence and semantics is shown
in Figure 2.
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Figure 3: Common types of lane distortion caused by slight
perturbation and the proposed Lane Distortion Score. (a)
Bend: unexpected shifts at the terminals; (b) Spike: shifts in
the middle; (c) Misalignment: missing or extra lane points.
Any kind of lane distortion can be represented as a combi-
nation of those three types of distortion. (d) We measure the
distortion between lanes with two types of point relation-
ships: match and mismatch.

Moreover, let x represent the vectors of unlabeled data
from the calibration dataset D. We use the symbol ⊙ to in-
dicate element-wise multiplication. Finally, Ŝ generates new
semantics derived from quantized models.

Problem Definition
Tuning-based PTQ, as mentioned in the last section, focuses
on minimizing the task quantization loss as opposed to min-
imizing local distance, given by:

min
w
Ex∼D

(∑
i

∥∥∥Ŝi(x)− Si(x)
∥∥∥2
F
+
∥∥∥Ĉi(x)− Ci(x)

∥∥∥2
F

)
,

(1)
where the first term corresponds to the reconstruction of
the fully pixel-wise semantic outputs, while the second term
pertains to the reconstruction of the confidence values. Com-
pression methods (Nagel et al. 2020; Li et al. 2021) opti-
mizes the above equation towards layer-wise and block-wise
approximation.

However, such an optimization is not suitable in LD mod-
els due to their intricate post-processing steps and seman-
tics rooted in physical interpretation. In the next section,
we identify the importance of semantic sensitivity if the
post-process. Thus, neglecting the valuable insights offered
by post-processing in the optimization objective would ulti-
mately yield less favorable outcomes.

Method
In this section, we reveal an important factor that signif-
icantly impacts PTQ performance in lane detection mod-
els: the semantic sensitivity to post-processing, which has
been overlooked by other PTQ research before. Then, com-
prehensive investigations are conducted from both intra-



head and inter-head aspects. Building on sensitivity observa-
tions within and across heads, we propose a Selective Focus
framework including two novel modules, Semantic Guided
Focus, and Sensitivity Aware Selection, to allocate appropri-
ate attention to different semantics. Our framework implic-
itly introduces the post-processing information into quanti-
zation optimization. The pipeline is depicted in Figure 1.

Semantic Sensitivity
Sensitivity to post-process Owing to the complexity of
optimizing the post-process, prevailing PTQ approaches
are confined to adjusting model parameters to align quan-
tized head outputs with their full-precision counterparts
(Equation 1) without considering the post-process. Never-
theless, we find the importance of the post-process pro-
cedure in ensuring accurate lane generation. Disregarding
post-processing information during the quantization opti-
mization phase can result in pronounced distortions, includ-
ing abrupt bends, spikes, and misalignments, even with a
marginal value of (Equation 1), as illustrated in Figure 3.

Motivated by this, we propose to investigate semantic sen-
sitivity, where some outputs of heads can be so important for
later post-process that small quantization errors of them can
cause severe lane distortion. Incorporating information from
the post-process into our model optimization would pave the
way for more effective semantic reconstruction.

Lane Distortion Score To study the sensitivity, a quan-
titative evaluation of lane distortion becomes imperative.
Given the frequently localized deviations in lanes induced
by quantization (as depicted in Figure 3), we abstain from
employing the conventional Intersection over Union (IoU)
metric (Pan et al. 2018; Feng et al. 2022) which overlooks
these local distortions. In response, a direct but effective
metric is introduced, which measures the shifts of all points
from the perturbed lane to the original one, as shown in Fig-
ure 3. The score of matched points is their distance, and
the score of mismatched points is a fixed penalty score v.
Concretely, our devised metric first matches points between
perturbed and normal lanes (set M), then calculates the dis-
tance for matched points (d(p0, p1)) and the penalty from
mismatched ones:

score =
∑

(p0,p1)∈M

d(p0, p1)

b(M)
+ nv, (2)

where the bounding length normalization (b(M)) is applied
to accommodate lanes of varying lengths and n is the num-
ber of mismatched points.

Equipped with the Lane Distortion Score, we can compute
the distortion of lanes under perturbation, which strongly
supports quantitively analysis of semantic sensitivity to post-
process and further method design.

Semantic Guided Focus
This section explores intra-head semantic sensitivity, where
we observe that semantics within each head associated with
the foreground region in post-processing play a more sig-
nificant role and propose a method called Semantic Guided
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Figure 4: Illustration of semantic sensitivity. The intra-head
semantic sensitivity shows that the foreground is sensitive
to perturbation while the background is not. The inter-head
semantic sensitivity indicates that heads are of different im-
portance for post-processing.

Focus. By leveraging confidence outputs, we can poten-
tially discern between semantics linked to the foreground
and background, which enables us to prioritize the former
and obtain an improved optimization in a PTQ setting with-
out labels.

Intra-head Semantic Sensitivity Considering the rela-
tionship between semantics (head outputs) and the post-
process, some semantics pertain to the foreground region in
the post-process, while others correspond to the background.
Also, it’s the distortion of the foreground region (lane) that
matters. Consequently, we argue that different pixels within
each head exhibit distinct sensitivities. To verify, we lever-
age the Lane Distortion Score of each pixel by adding the
same magnitude noise to them. The results showcased in
Figure 4 conclusively demonstrate that injecting noise into
entries associated with the foreground region can result in
more severe lane deformations. Given these findings, allo-
cating equal attention is not reasonable during optimization.

Furthermore, it’s worth noting that the number of entries
about the foreground is significantly fewer than those re-
lated to the background region, which further distracts previ-
ous techniques to focus on crucial positions. Therefore, we
are motivated to enhance the accurate expression of pixels
tied to the foreground region and suppress that of the back-
ground.

Intra-head Sensitivity Focus Motivated by the findings,
the core idea is to distinguish whether each element within
each head will be used in the foreground region (the lane) or



background.
(1) Reconstruction on semantic: We first focus on the

semantic term in Equation 1 and introduce a masking func-
tion M to achieve the distingishment. M removes the er-
ror term associated with the background and retains the ele-
ments for the foreground region. Then, we incorporate them
with an element-wise product, and the optimization objec-
tive on semantics becomes:

Ex∼D
∑
i

∥∥∥Mi(x) · (Ŝi(x)− Si(x))
∥∥∥2
F
. (3)

However, due to the absence of lane annotations under the
PTQ setting, it is unrealistic to identify exact elements tied
to the foreground. Fortunately, we find an upper bound of
Equation 3 of the models’ confidence output. Here we give
the theoretical finding of this upper bound:
Theorem 1. Given M representing a matrix function that
discerns elements associated with foreground or background
regions, and C denoting the confidence function of FP mod-
els, offering confidence scores for semantics linked with the
foreground, the following inequation stands:

Ex∼D
∑
i

∥∥∥Mi(x) · (Ŝi(x)− Si(x))
∥∥∥2
F

≤ Ex∼D
∑
i

∥∥∥Ci(x)⊙ (Ŝi(x)− Si(x))
∥∥∥2
F

(4)

Detailed proof of this theorem can be found in (Fan et al.
2024). With this theorem, the semantic-related optimization
target can be transformed to:

min
w
Ex∼D

∑
i

∥∥∥Ci(x)⊙ (Ŝi(x)− Si(x))
∥∥∥2
F
. (5)

The theorm means that we can leverage the model output
C(x) as a practical proxy of the annotation mask. In intu-
ition, the knowledge from the well-trained models can be
represented in its output, thus the model could generate a
mask similar to the annotation. We further assume the mask
get from the model follows a binomial distribution param-
terized by the confidence output, then the total expectation
turns to the result in the theorem. With the upper bound from
it, optimization can be more tractable.

(2) Reconstruction on confidence: Last, we incorporate
the reconstruction loss on confidence values on each head.
To prevent elements associated with the background region
turns into the foreground, especially under large quantiza-
tion noise, we propose to enhance the alignment of confi-
dence outputs by adopting a new parameter λ with λ > 1.
This heightened penalty on confidence outputs helps retain
the fidelity of background-related pixels while enabling a
concentrated focus on those linked to the foreground domain
via the first term.

min
w
Ex∼D

∑
i

(
∥∥∥Ci(x)⊙ (Ŝi(x)− Si(x))

∥∥∥2
F
+

λ
∥∥∥Ĉi(x)− Ci(x)∥∥∥2

F
).

(6)

Algorithm 1: Sensitivity Aware Selection

Require: Semantic head setH, hyper parameter k, and cali-
bration datasetD. Semantic function S(·)i and confidence
functions C(·)i on head i on the FP model. Quantized ver-
sion Ŝ(·)i and Ĉ(·)i.
for x ∈ D do

for i ∈ H do
Calculate full precision lanes L from {S(x)i}
Perturb the model by replacing Si(x) with Ŝi(x).
Calculate noised lanes L̂ from Ŝ(x)i.
Compute the s of (L,L′) with Equtaion 2
Update score of i-th head Scorei ← Scorei + s

end for
end for
Sort semantic heads by Score.
return Top-k of semantic head set H

The improved Semantic Guided Focus objective indi-
cates a simple yet elegant principle: a well-trained model
inherently possesses the capacity to instruct itself. By uti-
lizing model outputs for both mask estimation and back-
ground suppression in PTQ, the optimization process be-
comes foreground-oriented, leading to more efficient seman-
tic alignment.

Sensitivity Aware Selection
We also delve into inter-head sensitivity, where we observe
that specific heads are more sensitive to post-processing.
This insight leads us to introduce the Sensitivity Aware Se-
lection method, which dynamically and efficiently selects
the most influential heads during PTQ reconstruction.

Inter-head Semantic Sensitivity Considering the diverse
roles played by distinct heads in post-processing, we fur-
ther investigate semantic sensitivity across multiple heads.
By injecting noise into each head and calculating our dis-
tortion score, the sensitivity curve in Figure 4 is obtained. It
can be clearly seen that under the same perturbation mag-
nitude, certain heads like proj regression in Bezier-
Lane, exhibit notably higher Lane Distortion scores and of
course correspond to severely distorted lanes, compared to
others. This discrepancy highlights the considerable vari-
ation in sensitivity across different heads, which encour-
ages us to discriminate heads and thus implicitly incorporate
post-process information during optimization.

Inter-head Sensitivity Selection To handle varied seman-
tic sensitivity among heads, we introduce the Sensitivity
Aware Selection technique, which efficiently and adaptively
selects those sensitive heads during optimization. The algo-
rithm is formulated below and its procedure can be found in
the Algorithm 1.

(1) Head selection: The noticeable differences in sensi-
tivity prompt us to focus on the more sensitive heads, opti-
mizing them more effectively. Naturally, given the estimated
quantization noise level of each head, we can compute their
own Lane Distortion Score. By ranking these scores and



Bits Method Keypoint-based Curve-based Achor-based Segmentation-based

Full
Precision

Model
Baseline

CondLaneNet GANet LSTR BézierLaneNet LaneATT SCNN RESA
Small Mid Small Mid Small Mid Small Mid Small Mid Small Mid Small Mid
78.14 78.74 78.79 79.39 68.78 72.47 73.66 75.57 74.45 75.04 72.19 72.70 72.90 73.66

W8A8
ACIQ 77.95 78.58 78.58 79.21 67.50 72.14 73.43 75.36 74.34 74.56 72.03 72.55 72.76 73.64
QDrop 78.04 78.77 78.70 79.33 68.40 72.38 73.63 75.49 74.33 74.88 72.04 72.55 72.80 73.61
Ours 78.10 78.90 78.53 79.30 68.58 72.40 73.63 75.50 74.38 75.01 72.33 72.69 72.53 73.49

W8A4

ACIQ 58.63 37.67 5.38 20.18 47.63 12.49 23.79 4.77 54.20 0.64 62.63 49.26 54.16 49.62
OMSE 69.74 64.29 69.52 54.10 55.51 58.12 62.04 60.57 64.54 0.90 65.35 60.53 66.59 65.93
AdaRound 67.11 63.64 39.97 18.14 51.41 54.11 56.66 58.55 64.01 0.96 65.87 63.65 59.17 62.78
BRECQ 73.61 74.06 74.37 75.04 57.11 63.32 62.02 65.18 66.47 0.04 66.05 63.67 66.40 65.47
QDrop 74.76 75.49 75.77 75.56 60.34 65.25 64.48 66.91 66.58 0.06 66.85 64.83 67.27 67.54
Ours 75.56 75.74 76.32 76.51 63.14 68.15 68.98 70.01 69.85 34.53 69.61 69.51 69.46 70.60

W4A4

ACIQ 53.96 20.84 1.54 9.02 1.47 2.37 14.10 8.82 50.65 0.32 34.47 23.70 35.56 15.45
OMSE 63.64 55.06 49.96 37.21 1.79 17.02 52.38 46.03 62.34 0.39 51.49 49.67 57.07 50.83
AdaRound 20.35 / / / 20.69 7.95 50.70 48.60 34.53 0.00 6.56 0.03 68.36 64.57
BRECQ 74.10 75.80 75.67 75.89 30.83 50.09 66.96 70.30 68.69 28.34 54.34 52.30 67.70 69.48
QDrop 74.41 76.29 76.76 76.50 23.95 53.87 67.65 71.16 68.97 0.64 61.70 64.57 67.59 69.98
Ours 74.68 75.48 76.31 76.26 34.65 60.56 68.37 70.00 69.19 37.59 68.16 68.27 69.31 70.01

Table 1: F1-score performance comparison among different quantization algorithms and models. W8A8 means the weight and
activation are all quantized into 8 bits, and so does W4A4 and W8A4. Our method achieves superior performance under most
settings.

then selecting the top-k sensitive heads, a new reconstruc-
tion loss is constructed. This approach ensures that the opti-
mization process is cognizant of the semantic sensitivity to
post-processing, leading to a better-tuned model.

(2) Adaptive selection: Moreover, the optimization pro-
cess is aimed at minimizing the discrepancy between orig-
inal and quantized semantics, where we recognize that the
quantization loss for individual heads can evolve, leading
to dynamic changes in their quantization noise levels and
thus sensitivity ranking. Consequently, our selection of top-
k sensitive heads must adapt accordingly. In practical terms,
we can reassess the Lane Distortion Scores and repeat the
aforementioned step at fixed intervals of iterations. How-
ever, this repetition could impose a considerable time over-
head during tuning.

(3) Efficient adaptive selection: To accelerate it, we pro-
pose to apply a pre-processing technique, which first em-
ploys the Monte-Carlo method to sample diverse noise lev-
els and derive corresponding Lane Detection scores for each
head, then interpolates sampled points from a continuous
noise-score curve. This approach empowers us to gauge the
semantic sensitivity of different heads based on their respec-
tive curves using their current quantization loss as queries,
which introduces negligible computational burden during
the optimization process.

Based on varied semantic sensitivities across heads, we
adeptly and dynamically select the most sensitive heads.
This implicit inclusion of post-processing guidance leads to
a better-optimized model.

Experiments
Extensive experiments are conducted to prove the effective-
ness of the Selective Focus framework. We first present the
experiment setup, and then compare the proposed method
with other state-of-the-art PTQ works and the method shows
up to 6.4% F1 score improvement. After that, the ablation
study of the Selective Focus framework demonstrates the

contribution of each component. Finally, we compare the ef-
ficiency of the framework with existing PTQ and QAT meth-
ods.

Experiments Setup
We describe the datasets and evaluation protocols, the com-
parison methods, and the implementation details.

Datasets and Evaluation We conduct comprehensive ex-
periments on the CULane dataset and adopt its official
evaluation method. CULane contains 88,880 training im-
ages and 34,680 test images from multiple scenarios, and
the evaluation method provides precision, recall, and F1
score for each scenario. For brevity, we use the F1 score
of the whole dataset as the metric. For models, we evalu-
ate LD models in the four major classes: keypoint-, anchor-
, segmentation-, and curve-based models, including Cond-
LaneNet (Liu et al. 2021a), GANet (Wang et al. 2022b),
LSTR (Liu et al. 2021b), BézierLaneNet (Feng et al.
2022),.LaneATT (Tabelini et al. 2021), SCNN (Pan et al.
2018), and RESA (Zheng et al. 2021).

Implementation Details We implement our method based
on the PyTorch framework. Weights and activations are both
quantized with concrete bits denoted as W/A. Our method
is calibrated with 512 unlabeled images on three kinds of
quantization bits: W8A8, W8A4, and W4A4. During the
optimization, we choose the Adam optimizer with a learn-
ing rate set as 0.000025 and adjust weights for 5000 iter-
ations. Because of more computation overhead for layer-
wise and block-wise reconstruction, the net-wise reconstruc-
tion is adopted here and wins a 6X speedup. Other hyper-
parameters including k for Top-k in Sensitivity Aware Se-
lection is kept as 1 for models with two heads and 2 for
others, based on our ablation studies.

Comparison Methods We implement popular baselines
including OMSE (Choukroun et al. 2019), ACIQ (Banner,



Nahshan, and Soudry 2019), AdaRound (Nagel et al. 2020),
BRECQ (Li et al. 2021), and QDrop (Wei et al. 2022).
AdaRound and BRECQ are implemented by leveraging a
technical advancement introduced in QDrop, achieving bet-
ter results for them.

Main Results
We conduct experiments on CULane datasets. Table 1 shows
the results on CULane. With the decreasing activation pre-
cision, the proposed method shows advanced performance
consistently. For example, the method can achieve more than
3% up to 6.4% F1 score gain under 4-bit activation. As the
noise of the semantics used in the post-process would in-
crease significantly and the inter- and intra-head discrep-
ancy would go worse, they may lead to degradation or even
failures in methods ignoring it. Also, we note our obvi-
ous advantage in the models with specially designed fea-
ture aggregation modules, like attention in LSTR, feature
flip in BézierLaneNet, and spatial convolution in SCNN and
RESA. Those modules usually require information aggre-
gated from the total network, which leads the layer-wise and
block-wise methods to a harder situation, while our network-
wise framework could take advantage of the cross-layer
relationship naturally. Even in hard cases like LaneATT,
SCNN, and RESA, the method could outperform others sig-
nificantly. The proposed Selective Focus framework lever-
ages the post-process information in the PTQ stage and
thus tunes the quantized model more efficiently. With ad-
vanced performance across different precision configura-
tions and model types, we achieve the new state-of-the-art
post-training quantized lane detection and reduce the tuning
time by more than 6x.

Method Duration (Minutes) F1 Score
Ours 32 76.31

w/o Focus 31 73.27
w/o Selection 29 75.30

w/o Focus+Selection 29 72.98

Table 2: Abalation study of the proposed framework. Each
component contributes to the proposed framework, and the
two components are mutually beneficial.

Network Method Duration (Minutes) F1 Score

CondLaneNet Small
LSQ+ 1303 76.92
QDrop 112 74.76
Ours 33 75.56

RESA Small
LSQ+ 5326 69.80
QDrop 4378 67.59
Ours 46 69.46

Table 3: Comparison between PTQ and QAT methods. The
QAT method LSQ+ (gray region) suffers from low compu-
tation efficiency, while conventional PTQ methods such as
QDrop could save the cost but with an obvious performance
drop. In contrast, the proposed method significantly improve
the computation efficiency with less performance gap.

Ablation Study
We first investigate the effect of each component of the pro-
posed framework. Then, we analyze the efficiency of our
method, compared to QAT and previous PTQ methods.

Component Analysis To elucidate the contributions of in-
dividual components in our proposed method, we conducted
an ablation study on GANet Small using the W4A4 quanti-
zation configuration, as detailed in Table 2. In comparison
to the basic network-wise alignment (w/o Focus+Selection),
our approach boosts the performance by over 3% in the F1
score. The Semantics Guided Focus emerges as the primary
performance driver, underscoring the significance of fore-
ground information and the separate reconstruction benefits
for semantics and confidence. While the standalone Sensi-
tivity Aware Selection module enhances the F1 score by
a modest 0.3%, its cooperation with Focus amplifies the
improvement to 1%, proving the framework’s capability to
manage semantic sensitivities both within and across heads.
Notably, the proposed optimization strategy achieves perfor-
mance on par with block-wise PTQ, yet maintains a speed
akin to network-wise reconstruction.

Efficiency Analysis Although QAT comes with cost and
privacy concerns, it remains the premier quantization algo-
rithm due to its promising performance. To evaluate the per-
formance and efficiency gap between QAT and PTQ, we
performed comparative experiments on CondLaneNet and
RESA, utilizing the W8A4 quantization setup. These se-
lected models differ in computational demands, allowing us
to thoroughly probe the disparities between QAT and PTQ.
Besides, though block-wise PTQ methods, such as QDrop,
are much faster than QAT, the storage overhead and pro-
cessing time for feature maps in intermediate layers are still
problems. This is also the reason that we choose the efficient
network-wise reconstruction, bringing a 6x speedup.

Conclusion
This paper sheds light on the post-training quantization in
lane detection models leveraging the inherent semantics sen-
sitivity. Our study delves into the essence of semantic sensi-
tivity in the post-process and proposes a novel pipeline for
identifying the sensitivity and further leveraging it for op-
timization. By utilizing the post-processing information, the
proposed framework boosts the performance of PTQ for lane
detection even with the simplest optimization manner, which
could motivate further exploration of the unused information
lies in the lane detection models. Future endeavors might en-
compass efficient embedding of semantics information from
post-processing—bypassing intermediate proxies more than
the proposed score.
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