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Abstract

Deep neural networks have delivered remarkable perfor-
mance and have been widely used in various visual tasks.
However, their huge sizes cause significant inconvenience
for transmission and storage. Many previous studies have
explored model size compression. However, these stud-
ies often approach various lossy and lossless compression
methods in isolation, leading to challenges in achieving
high compression ratios efficiently. This work proposes a
post-training model size compression method that combines
lossy and lossless compression in a unified way. We first
propose a unified parametric weight transformation, which
ensures different lossy compression methods can be per-
formed jointly in a post-training manner. Then, a dedicated
differentiable counter is introduced to guide the optimiza-
tion of lossy compression to arrive at a more suitable point
for later lossless compression. Additionally, our method
can easily control a desired global compression ratio and
allocate adaptive ratios for different layers. Finally, our
method can achieve a stable 10× compression ratio with-
out sacrificing accuracy and a 20× compression ratio with
minor accuracy loss in a short time. Our code is available
at https://github.com/ModelTC/L2 Compression.

1. Introduction

In recent years, deep neural networks (DNNs), espe-
cially convolutional neural networks (CNNs) [1, 2, 3, 4],
have achieved attractive performance in various computer
vision tasks such as image classification, detection, and seg-
mentation. However, as their performance improves, their
parameter counts also significantly increase, which is very
storage-consuming. Therefore, despite their excellent per-
formance, it is difficult to deploy models with a large num-
ber of parameters, particularly on mobile or edge devices
with limited storage resources.

Model compression [5, 6, 7, 8, 9, 10] is a common solu-
tion to reduce the model size, including lossless and lossy
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Figure 1. Comparison between previous compression methods and
our unified post-training compression.

compression. Common lossless compression methods such
as Huffman coding and Range coding are both entropy cod-
ing methods. They can leverage redundant information in
data to achieve distortion-free compression. However, for
data with weak spatiotemporal coherence, high compres-
sion ratios are often difficult to achieve. Compared with
lossless methods, lossy methods such as pruning [11] and
quantization [12, 13] have attracted more attention recently.
Pruning reduces the model size by removing extraneous
weights, and quantization replaces weights in a low-bit for-
mat. Both pruning and quantization are trade-offs between
model distortion and compression ratio. Previous studies
have primarily focused on individual compression methods
or have merely combined different compression techniques
without considering the interaction between them, resulting
in multiple isolated trade-offs in successive stages. Hence,
they can hardly achieve a higher compression ratio with a
small amount of data and little training time.

To address this issue, as shown in Figure 1, this paper
proposes to mix different compression methods and opti-
mize them under the recent popular post-training setting,
which slightly adjusts weights for better performance. We
build an optimization objective that introduces an entropy
regularization term, making the global compression ratio
controllable. Based on it, a unified parametric weight trans-
formation is first designed to integrate different lossy com-

This ICCV paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.

17546



pression techniques together, allowing us to jointly explore
various compression strategies and determine unique ones
for each layer. Second, we devise a novel differentiable
counter to make our entropy regularization term differen-
tiable by leveraging kernel functions. This differentiable
way imposes constraints on the distribution of compressed
weights during optimization, contributing to more compati-
ble optimized weights with later lossless compression. Con-
sequently, our method combining lossy and lossless com-
pression can achieve a consistently superior compression
ratio with satisfying accuracy performance in an efficient
manner.

To the best of our knowledge, this is the first work that
presents a unified modeling approach for various lossy com-
pression methods while leveraging the characteristics of
lossless compression to optimize the process of lossy com-
pression. Extensive experiments on various networks verify
the efficacy of our method (e.g., stable 10× compression ra-
tio without sacrificing accuracy and up to 20× compression
ratio with minor accuracy loss).

Our main contributions can be summarized as follows:

• We propose a pioneering post-training model size
compression method that combines lossy and lossless
compression with a new optimization objective.

• We design a unified parametric weight transformation
approach for lossy compression methods, integrating
techniques such as pruning and quantization into a sin-
gle stage and determining each layer’s unique com-
pression scheme.

• We introduce a dedicated differentiable counter to esti-
mate the entropy of compressed weights. This counter
ensures that the distribution of the optimized weights
is more amenable for lossless compression.

• Extensive experiments conducted on various archi-
tectures, including classification and object detection
tasks, demonstrate that our method achieves high com-
pression ratios with negligible accuracy drops.

2. Related Work
In the past, numerous researchers have explored model

compression techniques. Knowledge distillation [14] is one
such technique that aims to transfer knowledge from a com-
plex teacher model to a simplified student model. By utiliz-
ing the soft target probability distribution from the teacher
model, the student model achieves comparable performance
with a smaller size. Matrix factorization [15, 16] is another
such technique that breaks down neural network weight ma-
trices into smaller ones, reducing parameters and making
the model more resource-efficient. Common methods in-
clude SVD and QR decomposition. Hereafter, we focus on

introducing network pruning, weight quantization, and en-
tropy encoding.

Network pruning. This technique achieves model com-
pression by selectively removing unimportant weights. Net-
work pruning can be categorized into structured pruning
and unstructured pruning. Structured pruning [17] targets
specific structures, like rows, columns, channels, or fil-
ters, which can accelerate computation. Unstructured prun-
ing [11] solely considers the importance of weight ele-
ments, disregarding their position. Our objective is to com-
press the model size, so we focus on unstructured pruning.
Previous studies [18, 19] have explored various methods
to measure weight importance, including magnitude-based
and derivative-based methods. Additionally, some studies
[20, 21, 22] have concentrated on determining the sparsity
ratio for each layer.

Weight quantization. Another common model compres-
sion technique is weight quantization, which reduces the
number of bits needed for weight storage by discretizing
weight values. Many studies [12, 23] have explored the ef-
fects of quantization intervals, clips, and rounding methods.
There are also studies [24, 25] focusing on non-uniform
quantization, which utilizes clustering to group weights in-
stead of using a uniform formula for calculation. Other
studies [26, 27, 28, 29, 30, 31, 32] have investigated mixed
precision quantization, suggesting that the importance of
network layers can influence the required storage bit-width
for each layer.

Entropy coding. Entropy coding, as a lossless data com-
pression technique, aims to achieve data compression with-
out any loss of information. It re-encodes data based on
its probability distribution, using shorter codes for high-
frequency data and longer codes for low-frequency data,
effectively saving storage space. Common entropy coding
methods encompass Huffman coding, and arithmetic cod-
ing, among others. It is frequently integrated with other
methods to further reduce weight storage [6, 33] or reduce
the memory footprint and transmission bandwidth of fea-
ture maps during inference [34, 35].

Regarding model compression, using a single technique
often fails to achieve satisfactory performance. Certain
studies [36, 37, 6] have explored using multiple methods
sequentially. However, they treated them in isolation with-
out considering their mutual impacts. Some studies [7] have
attempted to apply in-parallel pruning and quantization but
overlooked the influence of lossless compression on lossy
compression. Furthermore, these approaches typically re-
quired extensive training to achieve desirable results. Ad-
dressing these challenges involves contemplating the inte-
gration of lossless compression effects and the unification
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Figure 2. Overview of the proposed post-training compression method.

of modeling for lossy compression methods. We propose
an efficient post-training approach that achieves high com-
pression ratios while maintaining superior accuracies.

3. Preliminaries
In this section, some basic concepts of model compres-

sion methods will be introduced. Model compression re-
duces the model size, which can be divided into lossy com-
pression and lossless compression.

Basic notation. In this paper, we mark vectors and flattened
matrices w. Scalar multiplication is defined as ·. We take
CR as an abbreviation for compression ratio, L(·) as the
loss function, P(·) as probability mass function, and T (·)
as an element-wise transformation that converts dense or
real signals to sparse or discrete ones.

Lossless compression. Lossless compression utilizes re-
dundancy in data to achieve compression without introduc-
ing distortion, allowing for complete data recovery during
decompression. The compression ratio is positively related
to the amount of data redundancy. In information theory,
Shannon’s source coding theorem states that information
entropy measures the average information content of given
data, representing the average shortest coding length.

Since the model weights do not exhibit spatial and tem-
poral locality in our task, we treat the m elements of each
layer’s weights w as independent and identically distributed
random variables w. The self-information of w can be ex-
pressed as:

I(w) = −logbP(w), (1)

where P(·) represents the probability mass function of w.
When b equals 2, the unit of self-information is bits. The
entropy of w is the expected value of the self-information:

H(w) = E(I(w)) = −
∑
w̃∈w̃

P(w̃) log2 P(w̃), (2)

where w̃ represents the symbol set of w. Considering P(·)

as the sampling distribution function, the total shortest cod-
ing length for a layer is:

S(w) = mH(w) = −
∑
w̃∈w̃

mP(w̃) log2 P(w̃)

= −
∑
w̃∈w̃

num(w̃) log2 P(w̃)

= −
∑
w∈w

log2 P(w),

(3)

where num(w̃) represents the number of elements in w that
are equal to w̃. The entire neural network’s shortest encod-
ing length is the sum of that of each layer.

Lossy compression. Pruning and quantization are preva-
lent lossy compression methods that compress the original
weights w to ŵ by removing unimportant parameters or
converting floating-point values to low-bit fixed-point num-
bers. In the post-training setting, some studies [38, 12] on
pruning and quantization also utilize a small amount of cal-
ibration data to quickly fine-tune the weights. Most studies
aim to minimize the mean squared error between the model
outputs before and after compression, formulating their op-
timization goal as follows:

min
ŵ

E
[
∥F(x, ŵ))−F(x,w)∥2F

]
, (4)

where x is extracted from a calibration dataset with about
hundreds of images and F(·) produces outputs. Here, we
use the output of a neural network.

4. Method
In this section, we will first present the optimization ob-

jective for both lossy and lossless compression methods in
the post-training setting. Subsequently, two novel tech-
niques will be introduced: the unified weight transforma-
tion and the differentiable counter. These techniques serve
to optimize lossy compression uniformly and enhance col-
laboration with later lossless compression. Using our tech-
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niques shown in Figure 2, it is now possible to efficiently
achieve a highly compressed yet accurate model.

4.1. Optimization Objective

In this part, a novel optimization objective is introduced,
targeting superior compressed results in the post-training
setting.

To pursue high accuracy with limited data and GPU ef-
fort, we follow previous studies [11, 12] to slightly tune the
weights, minimizing the distance between the output after
compression and its original counterpart in Eq. 4. Besides,
another regularization term is added to encourage small
compressed models.

min
ŵ

E
[
∥F(x, ŵ))−F(x,w)∥2F + λ · Lr(ŵ)

]
, (5)

where Lr(·) defines the new regularization term, and λ is
the balance factor.

Motivated by [5], we incorporate entropy into the regu-
larization term and take Lr(·) = S(·), rather than directly
calculating the compressed model size. By explicitly build-
ing the relationship between compressed model size with
lossless techniques and entropy term, we can guide the op-
timization to pursue a better weight distribution, which is
more appropriate for later lossless compression. In this way,
the potential of the subsequent lossless compression can be
well unleashed.

min
ŵ

E
[
∥F(x, ŵ))−F(x,w)∥2F + λ · S(ŵ)

]
. (6)

By substituting Eq. 3 into the above equation, the follow-
ing one can be deduced:

min
ŵ

E

[
∥F(x, ŵ))−F(x,w)∥2F − λ ·

∑
ŵ∈ŵ

log2P(ŵ)

]
.

(7)

Compression ratio control. Furthermore, considering our
objective is to achieve high accuracy while meeting the
compression ratio requirement, we introduce CRtarget into
the term to control the whole compression ratio as shown in
Eq. 8. Once the CRtarget is attained, the lossy compression
will be subject only to its original objective:

Lr(ŵ) = ReLU(−
∑
ŵ∈ŵ

log2P(ŵ)− 32 · numel(w)

CRtarget
),

(8)
where 32 ·numel(w) is the size of the original weights w.

Optimizing the above equations is not straightforward.
Specifically, to attain our optimization objective, we put for-
ward a method that can jointly optimize various lossy com-
pression methods with a unified weight transformation in
Sec. 4.2. Additionally, a method is presented to ensure the
differentiability of the probability mass function by lever-
aging a kernel function in Sec. 4.3.
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Figure 3. Some forms of transformations: (a) refers to linear quan-
tization, (b) refers to exponential quantification, (c) refers to loga-
rithmic quantization, (d) refers to joint pruning and quantization.

4.2. Unified Weight Transformation

Previous studies [6, 7] treated different compression
methods separately without considering how they might af-
fect each other. Or they lacked a unified approach to con-
strain compression methods according to the optimization
objective. Consequently, they heavily relied on retrain-
ing the model’s weights to achieve desired results, mak-
ing it challenging to obtain satisfactory outcomes in a post-
training setting. To address these issues, we abstract differ-
ent lossy compression methods into a unified weight trans-
formation.

Unified representation. Here, we propose to present quan-
tization and pruning functions in a unified way. Quantiza-
tion usually first quantizes weights into integers and then
recovers them to floating-points, as defined in Eq. 9.

ŵ = T −1(⌊T (w)⌉), (9)

where ⌊·⌉ is the round-to-nearest operation, the element-
wise function T (·) encodes the weight transformation, and
T −1(·) is its reverse function. Note that T (·) always serves
as a continuous function under different quantization set-
tings, thus T −1(·) always exists. Especially, we can achieve
uniform quantization by setting T (w) = w

s , where s stands
for the interval of compressed data, as shown in Figure 3
(a). Non-uniform quantization like logarithmic or exponen-
tial ones can also be obtained by taking some non-linear
T (·) functions, as illustrated in Figure 3 (b) and (c).
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Motivated by the quantization process Eq. 9, we propose
to denote the pruning in the same way but with different
T (·) and T −1(·) functions. The T (·) transformation for
pruning can be devised as below:

T (w) =


0.5

e
· w, |w| < e

w, |w| ≥ e
, (10)

where e is the pruning threshold. In Eq. 10, it can be
observed that elements inside (−e, e) are projected into
(−0.5, 0.5), which will become zero after rounding and re-
verse functions. Otherwise, values are kept intact. There-
fore, unstructured pruning can be practiced by taking the
same Eq. 9 like quantization and assigning T (·) to Eq. 10.
That is to say, unstructured pruning and different kinds of
quantization can be clarified under the same concept.

Joint pruning and quantization. The unified representa-
tion Eq. 9 for quantization and pruning brings us a way to
integrate and optimize them together. By designing a con-
tinuous piece-wise function as shown in Eq. 11 and Figure
3 (d), we can pursue a joint objective.

T (w) =


0.5

e
· w, |w| < e

sign(w) · ( |w| − e

s
+ 0.5), |w| ≥ e

, (11)

where weights whose absolute values are smaller than e will
be pruned, and rest non-pruned weights will be operated
with s to achieve quantization.

Eq. 11 establishes a joint form for lossy compression.
By using such a T (·) and Eq. 9 in Eq. 5, joint pruning and
quantization optimization can be realized. Note that apart
from weight tuning for our objective, parameters of pruning
and quantization methods (i.e, e and s) are also optimized
together. Consequently, by adopting Ti(·) for each layer, we
can explore various compression methods for each layer and
determine their unique strategies. Thus, the model can be
effectively compressed with enhanced outcomes in a post-
training manner.

4.3. Differentiable Counter

To minimize Eq. 7, the differentiability of P(ŵ) is re-
quired, as it needs to guide the learning of parameters in
T (·). Since ŵ = T −1(⌊w̄⌉) and T −1(·) is bijective, we can
deduce that P(ŵ) = P(⌊w̄⌉). We model P(⌊w̄⌉) instead of
P(ŵ) as the interval remains fixed during the rounding op-
eration.

In comparison with complex probability models, directly
counting the frequencies of weights provides a more accu-
rate representation of the weight distribution. Based on this,
a novel differentiable counter is designed to estimate the

count
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relaxation

(a) (b)
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Figure 4. (a) refers to kernel function for relaxation, (b) refers to
the relaxed count function.

probability mass function, facilitating the learning. We ini-
tially define the cumulative distribution function fw̄(x) for
weights w̄ as follows:

fw̄(x) =
C(w̄, x)

numel(w̄)
, (12)

C(w̄, x) =
∑
w̄∈w̄

ϵ(x− w̄), (13)

ϵ(x) =

{
0, x < 0

1, x ≥ 0
, (14)

where numel(w̄) represents the number of weights in w̄,
and C(w̄, x) is a counter that counts the number of weights
less than x in w̄.

To ensure the differentiability of C(w̄, x), we leverage a
kernel function and replace the step function ϵ(x). In detail,
the relaxation function is defined as below:

C(w̄, x) ∼=
∑
w̄∈w̄

∫ x−w̄

−∞
K(u)du, (15)

K(x) =

0, x ∈ (−∞, δ) ∪ (δ,∞)
π

4δ
· cos(πx

2δ
), x ∈ [−δ, δ]

, (16)

where K(·) is the kernel function with a relaxation factor δ
as shown in Figure 4. When δ approaches zero, the function
simplifies to Eq. 13. Considering the rounding operation,
we estimate the probability mass of ⌊w̄⌉ based on the differ-
ence in cumulative probability function between ⌊w̄⌉+ 0.5
and ⌊w̄⌉ − 0.5:

P(⌊w̄⌉) = fw̄(⌊w̄⌉+ 0.5)− fw̄(⌊w̄⌉ − 0.5). (17)

With the differentiable counter, obtaining the differen-
tiable probability mass of the weights ⌊w̄⌉ becomes easy.
Besides, we utilize the Straight-Through Estimator (STE)
[40] to obtain gradients for rounding operations. Hence,
the entropy term in Eq. 7 can be minimized to achieve
⌊w̄⌉ more suitable for later lossless compression during the
weight transformation process, enabling a more effective
combination of lossy and lossless compression.
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Model Method Top1-acc Top5-acc Target CR CR

ResNet-18

uncompressed 71.06% 89.90% - 1.0×
DFQ 61.50% 83.56% - 9.8×
DeepCABAC 70.68% 89.67% - 7.6×
AdaRound 70.0% 89.26% - 9.7×
Data-Aware PNMQ* 69.21% / 69.76% 88.76% / 89.08% - 7.4×
Ours 70.79% 89.94% 12× 12.0×
Ours (higher CR) 70.20% 89.47% 15× 15.0×

ResNet-50

uncompressed 76.63% 93.07% - 1.0×
DFQ 75.47% 92.36% - 6.1×
AdaRound 75.87% 92.66% - 9.4×
Data-Aware PNMQ* 75.5% / 76.13% 92.74% / 92.86% - 7.8×
Ours 76.68% 93.13% 10× 10.0×
Ours (higher CR) 75.95% 92.82% 15× 15.0×

MobileNetV2

uncompressed 72.62% 90.62% - 1.0×
DFQ 68.70% 88.30% - 5.0×
DeepCABAC 72.00% 90.39% - 4.8×
AdaRound 69.01% 88.86% - 7.2×
Data-Aware PNMQ* 71.68% / 71.88% 90.2% / 90.29% - 4.9×
Ours 72.29% 90.58% 8× 7.9×
Ours (higher CR) 71.53% 90.18% 10× 9.9×

RegNet-600m

uncompressed 73.55% 91.57% - 1.0×
DFQ 73.32% 91.52% - 5.6×
DeepCABAC 70.76% 90.49% - 5.3×
AdaRound 71.92% 90.65% - 9.7×
Ours 73.08% 91.25% 12× 11.9×

RegNet-3200m

uncompressed 78.36% 94.16% - 1.0×
DFQ 78.06% 94.02% - 5.8×
DeepCABAC 77.02% 93.40% - 5.5×
AdaRound 77.32% 93.57% 10.4×
Ours 78.32% 94.13% 10× 10.0×
Ours (higher CR) 77.82% 93.89% 15× 15.0×

MNasNet

uncompressed 76.56% 93.15% - 1.0×
DFQ 76.20% 92.97% - 5.1×
DeepCABAC 74.04% 92.02% - 5.1×
AdaRound 74.41% 91.99% 8.4×
Ours 76.04% 92.77% 12× 12.0×

* means using the results published in the original paper [39].

Table 1. Comparison results with state-of-the-arts on various networks. Our unified compression method achieves the best performance.

5. Experiment

This section offers a comprehensive evaluation of our
method. We compare and analyze the results of the method
with state-of-the-art methods on the classification task, and
present results on the detection task. In addition, ablation
studies are conducted, accompanied by the analysis of time
cost, weight transformation, and compression ratio.

5.1. Experimental Setting

To demonstrate the generality of our proposed method,
extensive evaluations encompassing both the classification

task and the object detection task are performed. For the
classification task, we assess its performance across a wide
range of convolutional neural networks, including ResNet
[1], MobileNet [3], RegNet [2], and MNasNet [4]. The
evaluation is carried out on the challenging ImageNet-1k
dataset [41], with a calibration set of 1000 images sampled
from the training set to train the transformation parameters.
Moreover, for the object detection task, we conduct experi-
ments on the YOLOv5 model [42], and the performance is
validated on the widely used COCO2017 dataset [43].

We apply Eq. 11 for weight transformation and normal
quantization for bias. Weight transformation parameters are
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Figure 5. The mAP@0.5-0.95 of YOLOv5 with CR increasing.

initially trained, followed by fine-tuning of the weights. In-
spired by knowledge distillation, both the complete network
output and specific intermediate layer outputs contribute to
the computation of the mean squared error loss. The net-
works are trained for 5 epochs, with each epoch containing
300 iterations of transformation training and 1000 iterations
of weight fine-tuning. Finally, range coding, realized by
[44], is used to encode the model weights. More implemen-
tation details can be found in the supplementary material.

5.2. Classification Task

We compare our method with the state-of-the-art DFQ
[13] (only 8-bit weights), DeepCABAC [36, 37], Data-
Aware PNMQ [39], and AdaRound [12] (only 4-bit
weights) on ImageNet-1k. In the case of AdaRound, the
first and last layers are 8-bit weights. Additionally, to ensure
a fair comparison, we apply range coding for all methods.

Table 1 lists the performance of all methods. Thanks to
the unified modeling of different compression techniques,
our method could easily achieve the best compression ra-
tio with little accuracy loss, proving the superiority of our
method. For instance, the proposed method reduces the
model size by more than 12 times on ResNet-18 with only
a 0.3% accuracy drop, achieving about 60% improvement
than PNMQ. Moreover, we can find that different networks
have different sensitivities to compression. MobileNetV2 is
the most sensitive, and RegNet-3200m with a larger number
of parameters has a higher compression potential.

5.3. Object Detection Task

Besides, we conduct experiments on the obeject detec-
tion task, using a YOLOv5 model and the COCO2017
dataset. The final results are shown in Figure 5. In Figure 5,
mAP (mean average precision) is a widely-adopted metric,
which serves to evaluate the accuracy and recall rate of a
model in detecting objects across different classes. A higher
mAP implies that the model can better identify objects. It
can be observed that our method still performs remarkably
well on this task.

5.4. Ablation Study

In this part, ablation experiments will be performed on
the proposed unified weight transformation T (·) and the
differentiable counter.

weight transformation T (·) CR Top1-acc

linear quantization 14.97× 70.37%
log quantization 14.91× 70.24%
exp quantization 14.94× 70.29%
joint pruning and quantization 14.94× 70.20%

linear quantization 19.85× 68.34%
log quantization 19.89× 68.47%
exp quantization 19.87× 68.75%
joint pruning and quantization 19.95× 69.15%

Table 2. Compression results with different transformations.

kernel resolution CR Top1-acc Top5-acc

cosine

16 15.10× 70.14% 89.62%
32 15.03× 70.25% 89.60%
64 14.93× 70.21% 89.60%

128 15.00× 70.04% 89.63%

linear

16 15.29× 70.15% 89.57%
32 15.15× 70.05% 89.40%
64 14.95× 70.07% 89.50%

128 15.00× 70.20% 89.57%

triangle

16 15.06× 70.11% 89.56%
32 15.11× 70.09% 89.52%
64 15.09× 70.14% 89.61%

128 14.90× 70.14% 89.64%

Table 3. Performance on ResNet-18 at 15× CR for the differen-
tiable counter with different resolutions and kernel functions.

Choice of weight transformation. Table 2 presents the re-
sults of various transformations described in Figure 3. It is
evident that different transformations can achieve compara-
ble performance when the compression ratio is close to 15×
on ResNet-18, demonstrating the robustness of our trans-
formation. However, as the compression ratio increases to
20×, the transformation that combines pruning and quanti-
zation exhibits better performance. This observation high-
lights that our unified transformation effectively harnesses
diverse compression methods, enabling the possibility of
achieving extreme model compression.

Choice of differentiable counter. Table 3 provides com-
pression results on ResNet-18 at 15× CR with different re-
laxation factors δ = max(w)−min(w)

resolution and kernel functions.
We explored three kernel functions (cosine, linear, and tri-
angle) and four resolutions (16, 32, 64, 128) for the differ-
entiable counter. The results under all settings demonstrate
the robustness of our differentiable counter.

5.5. Analysis

In this part, we provide some analysis of our method.
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Figure 6. The distribution of bit width and sparsity ratio of ResNet-18 at a compression ratio of 20×.
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Figure 7. The accuracy of compressed models with CR increasing.

Analysis of time consumption. The main time cost of
our method during compression comes from the training
of transformation parameters and weight fine-tuning. We
use a V100 GPU with 16GB memory and set the batch size
to 32. For models such as ResNet-18, the training takes
around 0.8s per iteration, while fine-tuning takes around
0.08s. Larger models may take more time. Typically, 500
iterations for training and 2000 for fine-tuning can achieve
satisfactory results, which take only around 10 minutes.

As for the overhead of decompression during inference,
lossless compression is applied to the weights after the com-
plete transformation T −1(⌊T (w)⌉). Hence, we only need
to decode the entropy coding without dequantization or any
other inverse transformations. The time cost of decoding
is worth considering, but it can be mitigated by employing
various techniques, such as heterogeneous computing.

Analysis of weight transformation. The transformation
combining quantization and pruning adaptively selects suit-
able quantization bits and sparsity ratios for each layer,
as Figure 6 shows. It helps detect layers with redundant

parameters, such as “layer4.1.conv2” (20 in the figure) in
ResNet-18, meaningful for network structure optimizing.

Analysis of compression ratio. Figure 7 shows the trend
of performance with respect to the compression ratio. It can
be observed that, upon reaching a certain compression ratio,
such as 12× on MNasNet, the model experiences a signifi-
cant accuracy drop. The controllability of the compression
ratio in our method assists us in a more practical trade-off
between accuracy and compression ratio.

6. Conclusion

In this work, we propose a novel post-training compres-
sion method that combines lossy and lossless compression.
For lossy compression, we unify the modeling of weight
distortion via a unified weight transformation for pruning,
quantization, and so on. Moreover, we design a dedicated
differentiable counter that accurately computes the infor-
mation entropy of the compressed weights, which can reg-
ulate the weights and adapt to later lossless compression,
thus achieving a better compression ratio. Extensive ex-
periments on various networks prove the superiority of our
method compared to previous methods. Furthermore, our
work provides a meaningful perspective for more extreme
model compression in the future by unifying different com-
pression methods.
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