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a b s t r a c t 

The binary neural network, largely saving the storage and computation, serves as a promising technique 

for deploying deep models on resource-limited devices. However, the binarization inevitably causes se- 

vere information loss, and even worse, its discontinuity brings difficulty to the optimization of the deep 

network. To address these issues, a variety of algorithms have been proposed, and achieved satisfying 

progress in recent years. In this paper, we present a comprehensive survey of these algorithms, mainly 

categorized into the native solutions directly conducting binarization, and the optimized ones using tech- 

niques like minimizing the quantization error, improving the network loss function, and reducing the gra- 

dient error. We also investigate other practical aspects of binary neural networks such as the hardware- 

friendly design and the training tricks. Then, we give the evaluation and discussions on different tasks, 

including image classification, object detection and semantic segmentation. Finally, the challenges that 

may be faced in future research are prospected. 

© 2020 Elsevier Ltd. All rights reserved. 
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. Introduction 

With the continuous development of deep learning [1] , deep

eural networks have made significant progress in various fields,

uch as computer vision, natural language processing and speech

ecognition. Convolutional neural networks (CNNs) have been

roved to be reliable in the fields of image classification [2–6] ,

bject detection [7–10] and object recognition [11–14] , and thus

ave been widely used in practice. 

Owing to the deep structure with a number of layers and

illions of parameters, the deep CNNs enjoy strong learning

apacity, and thus usually achieve satisfactory performance. For

xample, the VGG-16 [12] network contains about 140 million

2-bit floating-point parameters, and can achieve 92.7% top-5

est accuracy for image classification task on ImageNet dataset.

he entire network needs to occupy more than 500 megabytes

f storage space and perform 1.6 × 10 10 floating-point arithmetic

perations. This fact makes the deep CNNs heavily rely on the

igh-performance hardware such as GPU, while in the real-world

pplications, usually only the devices ( e.g. , the mobile phones

nd embedded devices) with limited computational resources are
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vailable [15] . For example, embedded devices based on FPGAs

sually have only a few thousands of computing units, far from

ealing with millions of floating-point operations in the common

eep models. There exists a severe contradiction between the

omplex model and the limited computational resources. Although

t present, a large amount of dedicated hardware emerges for

eep learning [16–20] , providing efficient vector operations to en-

ble fast convolution in forward inference, the heavy computation

nd storage still inevitably limit the applications of the deep CNNs

n practice. Besides, due to the huge model parameter space, the

rediction of the neural networks is usually viewed as a black-box,

hich brings great challenges to the interpretability of CNNs.

ome works like [21–23] empirically explore the function of each

ayer in the network. They visualize the feature maps extracted by

ifferent filters and view each filter as a visual unit focusing on

ifferent visual components. 

From the aspect of explainable machine learning, we can sum-

arize that some filters are playing a similar role in the model,

specially when the model size is large. So it is reasonable to

rune some useless filters or reduce their precision to lower bits.

n the one hand, we can enjoy more efficient inference with such

ompression technique. On the other hand, we can utilize it to

urther study the interpretability of CNNs, i.e. , finding out which

ayer is important, which layer is useless and can be removed from

he black-box, what structure is beneficial for accurate prediction.

https://doi.org/10.1016/j.patcog.2020.107281
http://www.ScienceDirect.com
http://www.elsevier.com/locate/patcog
http://crossmark.crossref.org/dialog/?doi=10.1016/j.patcog.2020.107281&domain=pdf
mailto:xlliu@nlsde.buaa.edu.cn
https://doi.org/10.1016/j.patcog.2020.107281
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Many prior studies have proven that there usually exists large

redundancy in the deep structure [24–27] . For example, by simply

discarding the redundant weights, one can keep the performance

of the ResNet-50 [28] , and meanwhile save more than 75% of

parameters and 50% computational time. In the literature, ap-

proaches for compressing the deep networks can be classified

into five categories: parameter pruning [26,29–31] , parameter

quantizing [32–41] , low-rank parameter factorization [42–46] ,

transferred/compact convolutional filters [47–50] , and knowledge

distillation [51–56] . The parameter pruning and quantizing mainly

focus on eliminating the redundancy in the model parameters

respectively by removing the redundant/uncritical ones or com-

pressing the parameter space ( e.g. , from the floating-point weights

to the integer ones). Low-rank factorization applies the ma-

trix/tensor decomposition techniques to estimate the informative

parameters using the proxy ones of small size. The compact con-

volutional filter based approaches rely on the carefully-designed

structural convolutional filters to reduce the storage and computa-

tion complexity. The knowledge distillation methods try to distill a

more compact model to reproduce the output of a larger network. 

Among the existing network compression techniques, quan-

tization based one serves as a promising and fast solution that

yields highly compact models compared to their floating-point

counterparts, by representing the network weights with very low

precision. Along this direction, the most extreme quantization

is binarization, the interest in this survey. Binarization is a 1-

bit quantization where data can only have two possible values,

namely -1(0) or + 1. For network compression, both the weight and

activation can be represented by 1-bit without taking too much

memory. Besides, with the binarization, the heavy matrix multi-

plication operations can be replaced with light-weighted bitwise

XNOR operations and Bitcount operations. Therefore, compared

with other compression methods, binary neural networks enjoy a

number of hardware-friendly properties including memory saving,

power efficiency and significant acceleration. The pioneering work

like BNN [57] and XNOR-Net [58] has proven the effectiveness

of the binarization, namely, up to 32 × memory saving and

58 × speedup on CPUs, which has been achieved by XNOR-Net

for a 1-bit convolution layer. Following the paradigm of binary

neural network, in the past years a large amount of research has

been attracted on this topic from the fields of computer vision and

machine learning [1,2,12,28] , and has been applied to various pop-

ular tasks such as image classification [59–63] , detection [64,65] ,

and so on. With the binarization technique, the importance of a

layer can be easily validated by switching it to full-precision or

1-bit. If the performance greatly decreases after binarizing certain

layer, we can conclude that this layer is on the critical path of the

network. Furthermore, it is also significant to find out whether the

full-precision model and the binarized model work in the same

way from the explainable machine learning view. 

Besides focusing on the strategies of model binarization, many

studies have attempted to reveal the behaviors of model bina-

rization, and further explain the connections between the model

robustness and the structure of deep neural networks. This possi-

bly helps to approach the answers to the essential questions: how

does the deep network work indeed and what network structure

is better? It is very interesting and important to well investigate

the studies of binary neural network, which will be very beneficial

for understanding the behaviors and structures of the efficient

and robust deep learning models. Some of studies in the literature

have shown that binary neural networks can filter the input noise,

and pointed out that specially designed BNNs are more robust

compared with the full-precision neural networks. [66] shows that

noise is continuously amplified during the forward propagation of

neural networks, and binarization improves robustness by keeping

the magnitude of the noise small. 
The studies based on BNNs can also help us to analyze how

tructures in deep neural networks work. Liu et al. creatively

roposed Bi-Real Net, which added additional shortcuts (Bi-Real)

o reduce the information loss caused by binarization [62] . This

tructure works like the shortcut in ResNet and it helps to explain

hy the widely used shortcuts can improve performance of deep

eural networks to some extent. On the one hand, by visualizing

he activations, it can be seen that more detailed information

n the shallow layer can be passed to the deeper layer during

orward propagation. On the other hand, gradients can be directly

ackward propagated through the shortcut to avoid gradient van-

sh problem. Zhu et al. leveraged ensemble methods to improve

he performance of BNNs by building several groups of weak

lassifiers, and the ensemble methods improve the performance

f BNNs although sometimes face over-fitting problem [67] . Based

n analysis and experimentation of BNNs, they showed that the

umber of neurons is more important than the bit-width and it

ay not be necessary to use real-valued neurons in deep neural

etworks, which is similar to the principle of biological neural

etworks. Besides, reducing the bit-width of certain layer to ex-

lore its effect on accuracy is one effective approach to study the

nterpretability of deep neural networks. There are many works

o explore the sensitivity of different layers to binarization. It is

 common sense that the first layer and the last layer should be

ept in higher precision, which means that these layers play a

ore important role in the prediction of neural networks. 

This survey tries to exploit the nature of binary neural networks

nd categorizes the them into the naive binarization without op-

imizing the quantization function and the optimized binarization

ncluding minimizing quantization error, improving the loss

unction, and reducing the gradient error. It also discusses the

ardware-friendly methods and the useful tricks of training binary

eural networks. In addition, we present the common datasets and

etwork structures of evaluation, and compare the performance

f current methods on different tasks. The organization of the

emaining part is given as the following. Section 2 introduces

he preliminaries for binary neural network. Section 3 presents

he existing methods falling in different categories and lists the

raining tricks in practice. Section 4 gives the evaluation protocols

nd performance analysis. Finally, we conclude and point out the

uture research trends in Section 5 . 

. Preliminary 

In full-precision convolutional neural networks, the basic oper-

tion can be expressed as 

 = σ (w � a ) (1)

here w and a represent the weight tensor and activation tensor

enerated by the previous network layer, respectively. σ ( · ) is the

on-linear function and z is the output tensor and � represents

he convolution operation. In the forward inference process of neu-

al networks, the convolution operation contains a large number

f floating-point operations, including floating-point multiplication

nd floating-point addition, which correspond to the vast majority

f calculations in neural network inference. 

.1. Forward propagation 

The goal of network binarization is to represent the floating-

oint weights w and/or activations a using 1-bit. The popular

efinition of the binarization function is given as follows: 

 w 

(w ) = αb w 

, Q a (a ) = βb a (2)

here b w 

and b a are the tensor of binary weights (kernel) and

inary activations, with the corresponding scalars α and β . In the
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Fig. 1. Convolution Process of Binary Neural Networks 
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iterature, the sign function is widely used for Q w 

and Q a : 

ign (x ) = 

{
+1 , if x ≥ 0 

−1 , otherwise 
(3) 

With the binarized weights and activations, the vector multipli-

ation in forward propagation can be reformulated as 

 = σ (Q w 

(w ) � Q a (a )) = σ (αβ( b w 

� b a )) , (4) 

here � denotes the inner product for vectors with bitwise oper-

tion XNOR-Bitcount. Fig. 1 shows the convolution process in the

inary neural networks. 

.2. Backward propagation 

Similar to training a full-precision neural network model, when

raining a binary neural network, it is still straightforward to adopt

he powerful backward propagation (BP) algorithm based on the

radient descent to update the parameters. However, usually the

inarization function ( e.g. , sign ) is not differentiable, and even

orse, the derivative value in part of the function vanishes ( e.g. ,

 almost everywhere for sign ). Therefore, the common gradient

escent based BP algorithm cannot be directly applied to update

he binary weights. 

Fortunately, the technique called straight-through estimator

STE) has been proposed by Hinton et al. to address the gradient

roblem occurring when training deep networks binarized by sign

unction [68] . The function of STE is defined as follows 

lip (x, −1 , 1) = max (−1 , min (1 , x )) . (5)

hrough STE, the binary neural network can be directly trained

sing the same gradient descent method as the ordinary full-

recision neural network. However, when the clip function is

sed in backward propagation, if the absolute value of full-

recision activations are greater than 1, it cannot be updated in

ackward propagation. Therefore, in the practical scenarios, the

dentity function is also chosen to approximate the derivative of

he sign function. 

. Binary neural networks 

Compared with the full-precision neural network, the bi-

ary neural networks based on 1-bit representation replace the

oating-point multiplication and addition operations by the ef-

cient XNOR-Bitcount operations, and thus largely reduce the

torage space and the inference time. However, the binarization

f weights and activations will cause a severe deviation from the

ull-precision ones. Also, as aforementioned, the discrete bina-

ization makes the popular gradient descent based BP algorithm

sually fail to pursue the satisfactory solution, even with the STE

echnique. Therefore, the binary neural networks inevitably suffer

rom the performance degradation. It is still an open research

roblem that how to optimize the binary neural network. 
In recent years, a variety of binary neural networks have been

roposed, from the native solutions that directly binarize the

eights and inputs using the pre-defined binarization function, to

he optimization based ones using different techniques that treat

he problem from different perspectives: approximate the full-

recision values by minimizing the quantization error, constrain

he weights by modifying the network loss function, and learn the

iscrete parameters by reducing the gradient error. Table 1 sum-

aries the surveyed binarization methods in different categories. 

.1. Naive binary neural networks 

The naive binary neural networks directly quantize the weights

nd activations in the neural network to 1-bit by the fixed bina-

ization function. Then the basic backward propagation strategy

quipped with STE is applied to optimize the deep models in the

tandard training way. 

In 2016 Courbariaux et al. proposed BinaryConnect [59] that

ioneered the study of binary neural networks. BinaryConnect

onverts the full-precision weights inside the neural network into

-bit binary weights. In the forward propagation of training, a

tochastic binarization method is adopted to quantize the weights,

nd the effect of the binary weights during inference is simulated.

uring the backward propagation, a clip function is introduced to

ut off the update range of the full-precision weights to prevent

he real-valued weights from growing too large without any

mpact on the binary weights. Though after model binarization

he parameters of the neural network model is greatly compressed

even with large quantization error), the binary model can closely

each the state-of-the-art performance on some datasets in the

mage classification tasks. The stochastic binarization method in

inaryConnect is defined as: 

 b = 

{
+1 , with probability p = ˆ σ (w ) 
−1 , with probability 1 − p 

(6) 

here ˆ σ is the “hard sigmoid” function: 

ˆ (x ) = clip 

(
x + 1 

2 

, 0 , 1 

)
= max 

(
0 , min 

(
1 , 

x + 1 

2 

))
(7) 

Following the paradigm of binarizing the network, Courbariaux

t al. further introduced Binarized Neural Network (BNN) [57] , pre-

enting the training and acceleration skills in detail. It proved the

racticability and acceleration capability of binary neural networks

rom both theoretical and practical aspects. For the inference

cceleration of networks with batch normalization, this method

lso devised techniques like Shift-based Batch Normalization and

NOR-Bitcount. The experiments on image classification show that

NN takes 32 × less storage space and 60% less time. Smaragdis

t al. also studied the network binarization and developed Bit-

ise Neural Network especially suitable for resource-constrained

nvironments [69] . 
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Table 1 

Overview of binary neural networks. 

Type Method Key Tech. Tricks 

ST OP AQ GA 

Naive Binary Neural Networks BinaryConnect [59] FP: sign (x ) BP: STE – A – –

Bitwise Neural Networks [69] – – – –

Binarized Neural Networks [57] – AM – –

Optimization 

Based Binary 

Neural Networks 

Minimize the 

Quantization 

Error 

Binary Weight Networks [57] J(b , α) = ‖ x − αb ‖ 2 α∗, b ∗ = arg min 
α, b 

J(b , α) – S – –

XNOR-Net [58] RB + RP A – –

DoReFa-Net [60] – A – –

High-Order Residual Quantization [70] – A – –

ABC-Net [71] – S – –

Two-Step Quantization [72] RB – – –

Binary Weight Networks via Hashing [73] – S – –

PArameterized Clipping acTivation [74] – A – –

LQ-Nets [61] RB – – –

Wide Reduced-Precision Networks [75] WD A – –

XNOR-Net ++ [76] – A – –

Learning Symmetric Quantization [77] – – � –

BBG [78] SC – – –

Real-to-Bin [79] SC A – � 

Improve 

Network Loss 

Function 

Distilled Binary Neural Network [80] L b 
total 

= L b 
original 

+ λL b 
Customized 

– S – –

Distillation and Quantization [81] – S – –

Apprentice [82] – – – –

Loss-Aware Binarization [83] – A – –

Incremental Network Quantization [84] – S � –

BNN-DL [85] – R – � 

CI-BCNN [86] – R – � 

Main/Subsidiary Network [87] RB – – –

Reduce the 

Gradient Error 

Bi-Real Net [62] Customized ApproxFunc (FP) or QuantFunc (BP) 

or UpdateFunc (BP) 

SC S – � 

Circulant Binary Convolutional Networks [88] SC S – � 

Half-wave Gaussian Quantization [89] RB S – � 

BNN + [90] RB A – � 

Differentiable Soft Quantization [63] – A – � 

BCGD [91] – – – � 

ProxQuant [92] – A – � 

Quantization Networks [93] – S – � 

Self-Binarizing Networks [94] – A – � 

Improved Training BNN [95] – A – � 

IR-Net [96] – S � � 

Tech. = Technology. Tricks: ST = Structure Transformation, OP = Optimizer, AQ = Asymptotic Quantization, GA = Gradient Approximation. Optimizer: S = SGD, A = Adam, 

AM = AdaMax, R = RMSprop. Structure Transformation: RB = Reorder BN layer, RP = Reorder Pooling layer, WD = Widen, SC = Shortcut. FP = Forward Propagation, BP = 

Backward Propagation. 
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3.2. Optimization based binary neural networks 

The naive binarization methods own the advantages of saving

computational resources by quantizing the network in a very

simply way. However, without considering the effect of the bi-

narization in the forward and backward process, these methods

inevitably suffer the accuracy loss for the wide tasks. Therefore, in

order to mitigate the accuracy loss in the binary neural network,

in the past years, a great number of optimization-based solutions

have been proposed and shown the successful improvement over

the native ones. 

3.2.1. Minimize the quantization error 

For the optimization of binary neural networks, a common

practice is to reduce the quantization error of weight and acti-

vation. This is a straightforward solution similar to the standard

quantization mechanism that the quantized parameter should

approximate the full-precision parameter as closely as possible,

expecting that the performance of the binary neural network

model will be close to the full-precision one. 

As the early research considering the quantization error, Raste-

gari et al. proposed Binary Weight Networks (BWN) and XNOR-Net

[58] . BWN adopts the setting of binary weights and full-precision

activations, while XNOR-Net binarizes both weights and activa-

tions. Different from the prior studies, [58] well approximates the

floating-point parameters by introducing a scaling factor for the

binary parameter. Specifically, the weight quantization process in
WN and XNOR-Net can be formulated as w ≈ αb w 

, where α is

he floating-point scaling factor for the binarized weight b w 

. This

eans that the weights in BWN are binarized to {−α, + α} , but

till can bring the benefits of fast computation. Then minimizing

he quantization error can help to find the optimal scaling factor

nd binary parameters: 

in 

α, b w 
‖ w − αb w 

‖ 

2 (8)

he solution enjoys much less quantization error than directly us-

ng 1-bit ( −1/ + 1), thereby improving the inference accuracy of the

etwork. Fig. 2 shows the binarization and the corresponding con-

olution process in XNOR-Net. Similar idea was also proposed in

inary Weight Networks via Hashing (BWNH) [73] , which consid-

rs the quantizing process as a hash map with scaling factors. The

oReFa-Net [60] further extends XNOR-Net, so that the network

raining can be accelerated using quantized gradients. Mishra et al.

evised Wide Reduced-Precision Networks (WRPN) [75] that also

inimize the quantization error in a similar way to XNOR-Net,

ut increase the number of filters in each layer. Compared with

irectly binarizing the network, widening and binarizing together

an achieve a good balance between the precision and the accel-

ration. The work of Faraone et al. groups parameters in training

rocess and gradually quantizes each group with optimized scaling

actor to minimize the quantization error [77] . 

To further reduce the quantization error, High-Order Residual

uantization (HORQ) [70] adopts a recursive approximation to the

ull-precision activation based on the quantized residual, instead
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Fig. 2. Binarization and Convolution Process of XNOR-Net. 
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B  

b  

o  

[  

t  
f one-step approximation used in XNOR-Net. It generates the final

uantized activation by a linear combination of the approximation

n each recursive step. In a very similar way, Lin et al. designed

BC-Net [71] that linearly combines multiple binary weight ma-

rices and scaling factors to fit the full-precision weights and

ctivations, which can largely reduce the information loss caused

y binarization. Wang et al. pointed out the shortcoming of the

revious methods that separately minimizing the quantization

rror of weights and activations can hardly promise the outputs to

e similar to the full-precision ones [72] . To address this problem,

 two-step quantization (TSQ) method is designed. During the

rst step, all weights are full-precision values and all activations

re quantized into low-bit format with a learnable quantization

unction Q a . During the second step, Q a is fixed and the low-bit

eight vector b w 

and scaling factor α are learned as follow: 

in 

α, b w 
‖ 

z − Q a ( α(a � b w 

) ) ‖ 

2 
2 , (9) 

hich can be solved efficiently in an iterative manner. 

The aforementioned methods usually choose the fixed binariza-

ion function ( e.g. , sign function). One can also adopt more flexible

inarization function and learn its parameters during minimizing

he quantization error. To achieve this goal, Choi et al. proposed

Arameterized Clipping Activation (PACT) [74] with a learnable up-

er bound for the activation function. The optimized upper bound

f each layer is able to ensure that the quantization range of each

ayer is aligned with the original distribution. In practice, PACT per-

orms better on binary networks, and can achieve accuracy close

o full-precision network on larger networks. In [61] , the Learned

uantization (LQ-Nets) attempts to minimize quantization error

y jointly training neural networks and quantizers in the network.

ifferent from the previous work, LQ-Nets learn the quantization

hresholds and cutoff values by minimizing the quantization

rror during the network training, and can support arbitrary bit

uantization. In [97] , trainable scaling factors for both weights

nd activations are introduced to increase the value range. And

ased on XNOR-Net, Bulat et al. fused the activation and weight

caling factors into a single one that is learned discriminatively via

ackward propagation and proposed XNOR-Net ++ [76] . 

.2.2. Improve the network loss function 

Minimizing the quantization error tries to retain the values

f full-precision weights and activations, and thus reduces the

nformation loss in each layer. However, only focusing on the

ocal layers can hardly promise the exact final output passed

hrough a series of layers. Therefore, it is highly required that

he network training can globally take the binarization as well as

he task-specific objective into account. Recently, an amount of

esearch works at finding the desired network loss function that

an guide the learning of the network parameters with restrictions

rought by binarization. 

Usually the general binarization scheme only focuses on accu-

ate local approximation of the floating-point values and ignores

he effect of binary parameters on the global loss. In [83] , Hou

t al. proposed Loss-Aware Binarization (LAB) that directly min-

mizes the overall loss associated with binary weights using the

uasi-Newton algorithm. The method utilizes information from
he second-order moving average that has been calculated by

he Adam optimizer to find optimal weights with consideration

f the characteristics of binarization. Apart from considering the

ask-relevant loss from a quantization view, devising additional

uantization-aware loss item is proved to be practical. In [85] ,

ing et al. summarized the problems caused by forward bina-

ization and backward propagation in binary neural networks,

ncluding “degeneration”, “saturation” and “gradient mismatch”. 

o address these issues, a distribution loss was introduced to

xplicitly regularize the activation distribution as follows: 

 total = L CE + λL DL (10)

here L CE is the common cross-entropy loss for training deep

eural networks, L DL is the distribution loss for learning the

roper binarization, and λ balances the effect of the two types

f losses. With the guide of additional loss, the learned neural

etwork can effectively avoid the aforementioned obstacles and

s friendly to binarization. The Incremental Network Quantization

INQ) method [84] proposed by Zhou et al. also proved this point,

hich adds a regularization term in loss function. 

The guiding information for training accurate binary neural net-

orks can also derive from the knowledge of a large full-precision

odel. The Apprentice method [82] trains a low-precision student

etwork using a well-trained, full-precision, large-scale teacher

etwork, using the following loss function: 

 

(
x ; w 

T , b 

S 
w 

)
= αH 

(
y, p T 

)
+ βH 

(
y, p S 

)
+ γH 

(
z T , p S 

)
(11)

here w 

T and b 

S 
w 

are the full-precision weights of the teacher

odel and binary weights of the student (apprentice) model

espectively, y is the label for sample x , H(·) is the soft and hard

abel loss function between the teacher and apprentice model, and

, β , γ are the weighting factors, p T and p S are the predictions

f the teacher and student model, respectively. Under the super-

ision of the teacher network, the binary network can preserve

he learning capability and thus obtain the close performance

o the teacher network. The process of knowledge distillation

s shown in Fig. 3 . Similar mimic solutions like Distillation and

uantization (DQ) [81] , Distilled Binary Neural Network (DBNN)

80] and Main/Subsidiary Network [87] have been studied, and

heir experiments demonstrate that the loss functions related to

he full-precision teacher model help to stabilize the training of

inary student model with high accuracy. CI-BCNN proposed in

86] mines the channel-wise interactions, through which prior

nowledge is provided to alleviate inconsistency of signs in binary

eature maps and preserves the information of input samples dur-

ng inference. [79] built strong BNNs with a loss function during

raining, which matches the spatial attention maps computed at

he output of the binary and real-valued convolutions. 

.2.3. Reduce the gradient error 

Training of binary neural networks still relies on the popular

P algorithm. To deal with the gradients for the non-differential

inarization function, straight-through estimator (STE) technique is

ften adopted to estimate the gradients in backward propagation

68] . However, there exists obvious gradient mismatch between

he gradient of the binarization function ( e.g. , sign ) and STE ( e.g. ,
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Fig. 3. Schematic of apprentice network. 

Fig. 4. Overview ofdifferentiable soft quantization. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

w  

a  

a

v  

a  

r  

a  

F  

w  

a  

i  

l  

m  

f  

b  

t  

T  

t  

s  

e  

f  

p  

n  

a  

t  

i

 

p  

c  

B  

a

w  

w  

∇  

d  

[  

n  

a  
clip ). Besides, it also suffers the problem that the parameters

outside the range of [ −1 , +1] will not be updated. These problems

easily lead to the under-optimized binary networks with severe

performance degradation. 

Intuitively, an elaborately designed approximate binarization

function can help to relieve the gradient mismatch in the back-

ward propagation. Bi-Real [62] presents a customized ApproxSign

function to replace sign for back-propagation gradient calculation

as follow: 

ApproxSign (x ) = 

⎧ ⎪ ⎨ 

⎪ ⎩ 

−1 , if x < −1 

2 x + x 2 , if − 1 ≤ x < 0 

2 x − x 2 , if 0 ≤ x < 1 

1 , otherwise 

(12)

∂ ApproxSign (x ) 

∂x 
= 

{ 

2 + 2 x, if − 1 ≤ x < 0 

2 − 2 x, if 0 ≤ x < 1 

0 , otherwise 
(13)

Compared to the traditional STE, ApproxSign has a close shape

to that of the original binarization function sign , and thus the

gradient error can be controlled to some extent. Circulant Binary

Convolutional Networks (CBCN) [88] also applied an approximate

function to address the gradient mismatch from sign function.

Binary Neural Networks + (BNN + ) [90] directly proposed an im-

proved approximation to the derivative of the sign function, and

introduced a regularization function that encourages the learned

weights around the binary values. 

Besides focusing on the backward propagation, some recent

methods attempted to pursue the good quantization functions in

forward propagation, which can also reduce the gradient error.

In [89] , the proposed Half-ware Gaussian Quantization (HWGQ)

method gave a low-precision estimation for the more commonly

used ReLU function in the forward propagation in training process,

which surprisingly works well to solve the gradient mismatch

problem. Following the same intuition, Gong et al. present a Dif-

ferential Soft Quantization (DSQ) method [63] , replacing the tradi-

tional quantization function with a soft quantization function: 

ϕ(x ) = s tanh ( k ( x − m ) ) , if x ∈ P (14)
i i 
here k determines the shape of the asymptotic function, s is

 scaling factor to make the soft quantization function smooth

nd m i is the center of the interval P i . DSQ can adjust the cutoff

alue and the shape of the soft quantization function to gradually

pproach the standard sign function. In fact, the DSQ function

ectifies the data distribution in a steerable way, and thus helps to

lleviate the gradient mismatch. The overview of DSQ is shown in

ig. 4 . A similar method [93] also provides a simple and uniform

ay for weight and activation quantization by formulating it as

 differentiable non-linear function. Besides, ProxQuant proposed

n [92] formulates quantized network training as a regularized

earning problem instead and optimizes it via the prox-gradient

ethod. ProxQuant does backward propagation on the underlying

ull-precision vector and applies an efficient prox-operator in

etween stochastic gradient steps. [94] and [95] also explored

he smooth transitions for the derivative of the Sign , and used

anh function with parameters v and SoftSign function to reduce

raining gradient error. The IR-Net proposed in [96] included a

elf-adaptive Error Decay Estimator (EDE) to reduce the gradient

rror in training, which considers different requirements on dif-

erent stages of training process and balances the update ability of

arameters and reduction of gradient error. The IR-Net provided a

ew perspective for improving BNNs that retaining both forward

nd backward information is crucial for accurate BNNs, and it is

he first to design BNNs considering both forward and backward

nformation retention. 

Besides modifying binarization function in backward or forward

ropagation, [91] directly calibrates the gradients by the blended

oarse gradient descent (BCGD) algorithm. The weight update of

CGD goes by a weighted average of the full-precision weights

nd their quantized counterparts: 

 

t+1 = (1 − ρ) w 

t + ρb 

t 
w 

− η∇ f 
(
b 

t 
w 

)
(15)

here w 

t denotes the full-precision weights on the t -th step and

f 
(
b 

t 
w 

)
denotes the gradient of b 

t 
w 

, thereby yielding sufficient

escent in the objective value and thus accelerates the training.

98] further investigated training methods for quantized neural

etworks from a theoretical viewpoint, and show that training

lgorithms that exploit high-precision representations have an
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Table 2 

Deployment performance of binary neural networks. 

Dataset Method Acc. (%) Topology Platform LUTs BRAMs Clk (MHz) FPS Power (W) 

MNIST [107] FINN-R [108] 97.7 MLP-4 Zynq-8020 25,358 220 100 – 2.5 

FINN-R [108] 97.7 MLP-4 ZynqUltra 3EG 38,250 417 300 – 11.8 

ReBNet [109] 98.3 MLP-4 ∗ Spartan 750 32,600 120 200 – –

FINN [102] 98.4 MLP-4 Zynq-7045 82,988 396 200 1,561,000 22.6 

BinaryEye [110] 98.4 MLP-4 Kintex 7325T 40,000 110 100 10,000 12.2 

SVHN [111] FINN [102] 94.9 CNV-6 Zynq-7045 46,253 186 – 21,900 11.7 

FBNA [112] 96.9 CNV-6 Zynq-7020 29,600 103 – 6,451 3.2 

ReBNet [109] 97.0 CNV-6 ∗ Zynq-7020 53,200 280 100 – –

CIFAR-10 [113] Zhou et al. [114] 66.6 CNV-2 ∗ Zynq-7045 20,264 – – – –

Nakahara et al. [115] – CNV ∗ Vertex-7 690T 20,352 372 450 – 15.4 

Fraser et al. [116] 79.1 1/4 cnn ∗ KintexUltra 115 35,818 144 125 12,000 –

FINN-R [108] 80.1 CNV-6 ZynqUltra 3EG 41,733 283 300 – 10.7 

FINN-R [108] 80.1 CNV-6 Zynq-7020 25,700 242 100 – 2.3 

FINN [102] 80.1 CNV-6 Zynq-7045 46,253 186 200 21,900 11.7 

FINN [108] 80.1 CNV-6 ADM-PCIE-8K5 365,963 1,659 125 – 41.0 

FINN [117] 80.1 CNV-6 Zynq-7020 42,823 270 166 445 2.5 

Nakahara et al. [117] 81.8 CNV-6 Zynq-7020 14,509 32 143 420 2.3 

Fraser et al. [116] 85.2 1/2 cnn ∗ KintexUltra 115 93,755 386 125 12,000 –

Zhou et al. [114] 86.1 CNV-5 ∗ Vertex-7 980T 556,920 – 340 332,158 –

ReBNet [109] 87.0 CNV-6 ∗ Zynq-7020 53,200 280 200 – –

Zhao et al. [101] 87.7 CNV-6 Zynq-7020 46,900 140 143 168 4.7 

Fraser et al. [116] 88.3 BNN 

∗ KintexUltra 115 392,947 1814 125 12,000 –

FBNA [112] 88.6 CNV-6 Zynq-7020 29,600 103 – 520 3.3 

ImageNet [118] ReBNet [109] 41.0 CNV-5 ∗ VertexUltra 095 1,075,200 3456 200 – –

Yonekawa et al. [119] – VGG-16 ZynqUltra 9EG 191,784 32,870 150 31.48 22.0 

1 The ∗ represents the network using a customized network structure, and the Acc. in table refers to Top-1 classification accuracy on each dataset. 
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mportant greedy search phase that purely quantized training

ethods lack, which explains the difficulty of training using

ow-precision arithmetic. 

.3. Efficient computing architectures for binary neural networks 

The most attractive point of binary neural networks is that

hey enjoy the advantages of fast computation, low power con-

umption and low memory footprint, which can faithfully support

he general hardware (including FPGA, ASIC, CPU, etc ) with lim-

ted computational resources. FPGAs are the most widely used

latforms because they allow for customizing data paths and

djusting the designs. In particular, FPGAs allow optimization

round XNOR-Bitcount operations. ASICs have the potential to

rovide ultimate power and computational efficiency for binary

eural networks, because the hardware layout in ASICs can be

esigned according to network structure. To make the binarization

lgorithms more practical in the wide scenarios with different

ardware environment, researchers also devoted great efforts to

eveloping hardware-friendly binary networks. 

XNOR.AI team, who proposed XNOR-Net [58] , successfully

aunched XNOR-Net on the cheap Raspberry Pi device. In order

o reduce the amount of computation, they conducted optimiza-

ion for different targeted hardware. They also tried to combine

NOR-Net with real-time detection algorithms such as YOLO

99] , and deployed them in the edge computing scenarios like

mart home and autonomous driving. FP-BNN [100] implemented

 64-channel acceleration on the Stratix-V FPGA system and

nalyzed the performance through the Resource-Aware Model

nalysis (RAMA) method. Both [101] and [102] from Xilinx also

tudied the FPGA-based binary network accelerator using different

trategies. [101] depended on variable-length buffers and achieved

p to twice the number of operations per second of existing FPGA

ccelerators. [103] proposed two types of fast and energy-efficient

rchitectures for binary neural network inference. By reusing the

esults from previous computation, much cycles for data buffer

ccess and computations can be skipped. In order to achieve the

ost possible memory latency hiding, [102] designed a multi-

tream architecture, and applied the Bitcount, Threshhold and
R operations to map the binary network to the FPGA operators.

he researchers of the Haas-Platna Software Institute in Germany

mplemented an accelerated version of BMXNet [104,105] on GPU

or both binary neural networks and linear quantization networks

ased on MXNet, supporting XNOR-Net and DoReFa-Net. For ARM

latform, engineers from JD company developed the binarization

nference library daBNN [106] for mobile phone platforms. The

ibrary uses ARM assembly instructions, which is 8-24 × more

fficient than BMXNet. 

We provide a comparison of different binary neural network

mplementations [101,102,108–110,114–117,119] on different FPGA 

latforms in Table 2 . It can be seen that the method proposed by

119] can achieve comparable accuracy to full-precision models,

lthough it is not efficient enough. The implementation of Xilinx’s

102] owns the most promising speed with a low power consump-

ion. A series of experiments prove that it can achieve a good bal-

nce among accuracy, speed and power consumption. [109] obtains

igh accuracy on small datasets such as MNIST and CIFAR-10, but

 poor result on ImageNet. We have to point out that despite the

rogress of developing hardware-friendly algorithms, till now there

ave been quite few binary models that can perform well on large

atasets such as ImageNet in terms of both speed and accuracy. 

.4. Applications of binary neural networks 

Image classification is a fundamental task in computer vision

nd machine learning. Therefore, most of existing studies chose to

valuate binary neural networks on the image classification tasks.

NNs can greatly accelerate and compress the neural network

odels, which is of great attraction to deep learning researchers.

oth weights and activations are binary in BNNs and it results in

8 × faster convolutional operations and 32 × memory savings

heoretically. Thus the binary neural networks are also applied

o other common tasks such as object detection and semantic

egmentation. 

In the literature, Kung et al. utilized binary neural networks

or both object recognition and image classification tasks [120] on

nfrared images. In this work, the binary neural networks got

omparable performance to full-precision networks on MNIST
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and IR datasets and achieved at least a 4 × acceleration and an

energy saving of three orders of magnitude over the GPU. [64] also

addressed the fast object detection algorithm by unifying the

prediction and object detection process. It obtained 62 × acceler-

ation and saved 32 × storage space using binary VGG-16 network,

where except the last convolution layer, all other layers are bina-

rized. Li et al. generated quantized object detection neural net-

works based on RetinaNet and faster R-CNN, and show that these

detectors achieve very encouraging performance [65] . Leng et al.

applied BNNs to different tasks, and evaluated their method on

convolutional neural networks for image classification and object

detection, and recurrent neural networks for language model [121] .

Zhuang et al. proposed a “network decomposition” strategy called

Group-Net, which shows strong generalization to different tasks

including classification and semantic segmentation, outperforming

the previous best binary neural networks in terms of accuracy

and major computation savings [122] . In [123] , SeerNet consid-

ers feature-map sparsity through low-bit quantization, which is

applicable to general convolutional neural networks and tasks. 

The researchers also studied enhancing the robustness of neural

network models through model binarization. Binary models were

generally considered to be more robust than full-precision models,

because they were considered to filter the noise of input. Lin et al.

explored the impact of quantization on the model robustness. They

showed that quantization operations on parameters help BNNs to

reduce the distance by removing perturbations when magnitude of

noise is small. However, for vanilla BNNs, the distance is enlarged

when magnitude of noise is large. The inferior robustness comes

from the error amplification effect in forward propagation of BNNs,

where the quantization operation further enlarges the distance

caused by amplified noise. They propose Defensive Quantization

(DQ) [66] to defend the adversarial examples for quantized models

by suppressing the noise amplification effect and keeping the

magnitude of the noise small in each layer. Quantization improves

robustness instead of making it worse in DQ models, thus they are

even more robust than full-precision networks. 

3.5. Tricks for training binary neural networks 

Due to the highly discrete nature of the binarization, training

binary neural networks often requires the introduction of special

training techniques to make the training process more stable

and the convergence accuracy much higher. In this section, we

summarize the general and effective binary neural network train-

ing techniques that have been widely adopted in the literature,

from the aspects including network structure transformation,

optimizer and hyper-parameter selection, gradient approximation

and asymptotic quantization. 

3.5.1. Network structure transformation 

Binarization converts activations and weights to {−1 , +1 } . This

is actually equivalent to regularizing the data, making the data

distribution changed in an unexpected way after binarization.

Adjusting the network structure serves as a promising solution to

adapting to the distribution changes. 

Simply reordering the layers in the network can improve the

performance of the binary neural network. In [124] , researchers

from the University of Oxford pointed out that almost all binariza-

tion studies have repositioned the location of the pooling layer. The

pooling layer is always used immediately after the convolutional

layer to avoid information loss caused by max pooling after bina-

rization. Experiments have shown that this position reorder has

a great improvement in accuracy. In addition to the pooling layer,

the location of the batch normalization layer also greatly affects

the stability of binary neural network training. [72] and [89] insert

a batch normalization layer before all quantization operations to
ectify the data. After this transformation, the quantized input

beys a stable distribution (sometimes close to Gaussian), and

hus the mean and variance keep within a reasonable range and

he training process becomes much smoother. 

Based on the similar idea, instead of adding new layers, several

ecent work attempts to directly modify the network structure.

or example, Bi-Real [62] connects the full-precision feature

aps across the layer to the subsequent network. This method

ssentially adjusts the data distribution through structural trans-

ormation. Mishra et al. devised Wide Reduced-Precision Networks

WRPN) [75] , which increase the number of filters in each layer

nd thus reform the data distributions. Binary Ensemble Neural

etwork (BENN) [67] leverages the ensemble method to fit the

nderlying data distributions. Liu et al. proposed circulant filters

CiFs) and a circulant binary convolution (CBConv) to enhance the

apacity of binarized convolutional features, and circulant back

ropagation (CBP) was also proposed to train the structures [88] .

BG [78] even appended a gated residual to compensate their

nformation loss during the forward process. 

.5.2. Optimizer and hyper-parameter selection 

Choosing the proper hyper-parameters and specific optimizers

hen training binary neural networks also improves the per-

ormance of BNNs. Most existing binary neural network models

hose an adaptive learning rate optimizer, such as Adam. Using

dam can make the training process better and faster, and the

moothing coefficient of the second derivative is especially critical.

he analysis by [124] shows that if using a fixed learning rate

ptimizer that does not consider historical information, such as a

tochastic gradient descent (SGD) algorithm, one needs to adopt a

arge batch size to improve the performance. 

The setting of the batch normalization’s momentum coefficient

s also critical. In [124] , by comparing the precision results under

ifferent momentum coefficients, it is found that the parameters

f the batch normalization need to be set appropriately to adapt

o the jitter caused by the binarization operation. 

.5.3. Asymptotic quantization 

Since the quantization has negative impact on training, many

ethods employed the asymptotic quantization strategy, which

radually increases the degree of quantization, to reduce the

osses caused by parameter binarization. Practice shows that this

tep-by-step quantization method is useful to find the optimal so-

ution. For instance, INQ [84] groups the parameters and gradually

ncreases the number of groups participating in the quantization

o achieve group-based step-by-step quantization. [125] introduces

he idea of stepping the bit-width, which first quantizes to a

igher bit-width and then quantizes to a lower bit-width. This

trategy can help to avoid the large perturbations caused by

xtremely low-bit quantization, compensating the gradient error

f quantized parameters during training. 

.5.4. Gradient approximation 

It became a common practice to use a smoother estimator in

inary neural network training process. The gradient error usually

xists in backward propagation due to the straight-through esti-

ator. Finding an approximate function close to the binarization

unction serves as the simple and practical solution. This becomes

 popular technique widely considered in recent studies [62,88–

0,94–96] , where the approximate functions are tailored according

o different motivations, to replace the standard clip function

hat causes gradient error. For designing a proper approximate

unction, an inspiring idea is to align its shape with that of the

inarization function [63] . 
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. Evaluation and discussions 

.1. Datasets and network structures 

To evaluate the binary neural network algorithms, the image

lassification task is widely chosen, and correspondingly two com-

on image datasets: CIFAR-10 [113] and ImageNet [118] are usually

sed. The CIFAR-10 is a relatively small dataset containing 60,0 0 0

mages with 10 categories, while ImageNet dataset is currently the

ost popular image classification dataset. For other tasks like ob-

ect detection and semantic segmentation, PASCAL VOC [126] and

OCO (Common Objects in Context) [127] are also employed for

valuating the performance of the binary neural networks. PASCAL

OC dataset is derived from the PASCAL Visual Object Classes

hallenge, which is used to evaluate the performance of models

or various tasks in the field of computer vision. Many excellent

omputer vision models (including classification, positioning,

etection, segmentation, motion recognition, etc ) are based on

he PASCAL VOC dataset, especially some object detection models.

OCO is a dataset provided by the Microsoft team for image

ecognition and object detection. It collects images by searching

0 object categories and various scene types such as Flickr. 

To investigate the generalization capability of the binary neural

etwork algorithm over different network structures, various deep

odels including VGG [12] , AlexNet [11] , ResNet-18 [28] , ResNet-

0, ResNet-34, and ResNet-50, etc . will be binarized and tested.

hese models have outstanding contributions in the progress of

eep learning, and make significant breakthrough in ImageNet
Table 3 

Imageclassification performance of binary neural networks on CIFAR-10 d

Type Method

Full-Precision Neural Networks –

Naive Binary Neural Networks BinaryC

BNN [5

Optimization Based Binary 

Neural Networks 

Minimize the 

Quantization Error 

BWN [5

XNOR-N

DoReFa

HORQ 

TSQ [7

BBG [7

LQ-Net

Improve Network Loss 

Function 

LAB [83

Main/S

Networ

BCGD [

ProxQu

BNN-D

CI-BCN

Reduce the Gradient 

Error 

DSQ [6

IR-Net 
lassification task. Among them, the VGG network contains a large

umber of parameters and convolution operations, so binarizing

GG can obviously show the inference acceleration of different

lgorithms. ResNet is currently the most popular deep model in

any tasks, with a sufficient number of layers. 

.2. Image classification tasks 

Most binary neural networks adopt the inference accuracy

f image classification as the evaluation metric, as the classical

lassification models do. Tables 3 and 4 respectively illustrate the

erformance of the typical binary neural network methods on

IFAR-10 and ImageNet, and compare the inference accuracy with

ifferent bit-width and network structures. 

Comparing the performance of binary neural networks on dif-

erent datasets, we can first observe that binary neural networks

an approach the performance of full-precision neural networks

n small datasets ( e.g. MNIST, CIFAR-10), but still suffer a severe

erformance drop on large datasets ( e.g. ImageNet). This is mainly

ecause for the large dataset, the binarized network lacks suf-

cient capacity to capture the large variations among data. This

act indicates that there still require great efforts for pursuing

he delicate binarization and optimization solution to design a

atisfactory binary neural network. 

From the Tables 3 and 4 , it can be concluded that the neural

etworks are more sensitive to the binarization of activations.

hen only quantizing weights to 1-bit and leaving the activations

s full-precision, there is a smaller performance degradation. Tak-
ataset. 

 Bit-Width(W/A) Topology Acc. (%) 

32/32 VGG-Small [61] 93.8 

32/32 ResNet-20 [61] 92.1 

32/32 ResNet-32 [92] 92.8 

32/32 ResNet-44 [92] 93.0 

32/32 VGG-11 [87] 83.8 

32/32 NIN [87] 84.2 

onnect [59] 1/32 VGG-Small 91.7 

7] 1/1 VGG-Small 89.9 

8] 1/32 VGG-Small 90.1 

et [58] 1/1 VGG-Small 89.8 

1/1 Customized [70] 77.0 

-Net [60] 1/32 ResNet-20 90.0 

1/1 ResNet-20 79.3 

[70] 2/1 Customized [70] 82.0 

2] 3/2 VGG-Small 93.5 

8] 1/1 ResNet-20 85.3 

1/1 ResNet-20 (2x) 90.7 

1/1 ResNet-20 (4x) 92.5 

s [61] 1/32 ResNet-20 90.1 

1/2 VGG-Small 93.4 

] 1/32 VGG-Small 89.5 

1/1 VGG-Small 87.7 

ubsidiary 

k [87] 

1/1 NIN 83.1 

1/1 VGG-11 82.0 

1/1 ResNet-18 86.4 

87] 1/4 VGG-11 89.6 

1/4 ResNet-20 90.1 

ant [92] 1/32 ResNet-20 90.7 

1/32 ResNet-32 91.5 

1/32 ResNet-44 92.2 

L [85] 1/1 VGG-Small 90.0 

N [86] 1/1 VGG-Small 92.5 

1/1 ResNet-20 91.1 

3] 1/1 VGG-Small 91.7 

1/32 ResNet-20 90.2 

1/1 ResNet-20 84.1 

[63] 1/32 ResNet-20 90.2 

1/1 VGG-Small 90.4 

1/1 ResNet-18 91.5 

1/1 ResNet-20 86.5 
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Table 4 

Image classification performance of binary neural networks on ImageNet dataset. 

Type Method Bit-Width(W/A) Topology Top-1(%) Top-5(%) 

Full-Precision Neural Networks – 32/32 AlexNet [61] 57.1 80.2 

32/32 ResNet-18 [61] 69.6 89.2 

32/32 ResNet-34 [61] 73.3 91.3 

32/32 ResNet-50 [61] 76.0 93.0 

32/32 VGG-Variant [61] 72.0 90.5 

Naive Binary Neural Networks BinaryConnect [59] 1/32 AlexNet 35.4 61.0 

BNN [57] 1/1 AlexNet 27.9 50.4 

Optimization Based Binary 

Neural Networks 

Minimize the 

Quantization Error 

BWN [58] 1/32 AlexNet 56.8 79.4 

1/32 ResNet-18 60.8 83.0 

XNOR-Net [58] 1/1 AlexNet 44.2 69.2 

DoReFa-Net [60] 1/1 AlexNet 43.6 –

1/1 AlexNet 49.8 –

ABC-Net [71] 1/32 ResNet-18 62.8 84.4 

2/32 ResNet-18 63.7 85.2 

1/1 ResNet-18 42.7 67.6 

1/1 ResNet-34 52.4 76.5 

TSQ [72] 1/1 AlexNet 58.0 80.5 

BWNH [73] 1/32 AlexNet 58.5 80.9 

1/32 ResNet-18 64.3 85.9 

PACT [74] 1/32 ResNet-18 65.8 86.7 

1/2 ResNet-18 62.9 84.7 

1/2 ResNet-50 67.8 87.9 

LQ-Nets [61] 1/2 ResNet-18 62.6 84.3 

1/2 ResNet-34 66.6 86.9 

1/2 ResNet-50 68.7 88.4 

1/2 AlexNet 55.7 78.8 

1/2 VGG-Variant 67.1 87.6 

SYQ [77] 1/2 AlexNet 55.4 78.6 

1/8 ResNet-18 62.9 84.6 

1/8 ResNet-50 70.6 89.6 

WRPN [75] 1/1 (1 × ) ResNet-34 60.5 –

1/1 (2 × ) ResNet-34 69.9 –

1/1 (3 × ) ResNet-34 72.4 –

XNOR-Net ++ [76] 1/1 (1 × ) ResNet-18 57.1 79.9 

1/1 (1 × ) AlexNet 46.9 71.0 

Improve Network Loss 

Function 

INQ [84] 2/32 ResNet-18 66.0 87.1 

BNN-DL [85] 1/1 AlexNet 41.3 65.8 

XNOR-Net-DL [85] 1/1 AlexNet 47.8 71.5 

DoReFa-Net-DL [85] 1/1 AlexNet 47.8 71.5 

CompactNet-DL [85] 1/2 AlexNet 47.6 71.9 

WRPN-DL [85] 1/1 AlexNet 53.8 77.0 

Main/Subsidiary Network [87] 1/1 ResNet-18 50.1 –

1/1 ResNet-34 54.9 86.6 

Reduce the Gradient 

Error 

Bi-Real [62] 1/1 ResNet-18 56.4 79.5 

1/1 ResNet-34 62.2 83.9 

HWGQ [89] 1/1 AlexNet 52.7 76.3 

CBCN [88] 1/1 ResNet-18 61.4 82.8 

Quantization 1/32 AlexNet 58.8 81.7 

Networks [93] 1/32 ResNet-18 66.5 87.3 

1/32 ResNet-50 72.8 91.3 

BCGD [91] 1/4 ResNet-18 65.5 86.4 

1/4 ResNet-34 68.4 88.3 

DSQ [63] 1/32 ResNet-18 63.7 –

IR-Net [96] 1/32 ResNet-18 62.9 84.1 

1/32 ResNet-34 66.5 86.8 

1/1 ResNet-18 58.1 80.0 

1/1 ResNet-34 70.4 89.5 

IT-BNN [95] 1/1 ResNet-18 53.7 76.8 

1/1 AlexNet 48.6 72.8 
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a  
ing ResNet-18 in ABC-Net [71] on ImageNet dataset as an example,

there is only about 7% accuracy loss after applying binarization

to weights but there is addition 20% loss after the activations are

binarized. Thus eliminating the influence of activation binarization

is usually much more important when designing binary network,

which becomes the main motivations for studies like [85] and [74] .

After adding reasonable regularization to the distribution of activa-

tions, the harmful effect caused by binarization on activations will

be reduced, and subsequently the accuracy is naturally improved. 

What’s more, the robustness of binary neural networks is

highly relevant to their structures. Some specific structure patterns

are friendly to binarization, such as skip connections proposed

in [62] and wider blocks proposed in [75] . With a shortcut to
irectly pass full-precision values to the following layers, Bi-Real

62] achieves performance close to full-precision models. With a

 × wider structure, the accuracy loss of ResNet-34 in [75] is

ower than 1%. In fact, what they essentially do is to enable

he information to pass through the whole network as much as

ossible. Although the structure modification may increase the

mount of calculation, they can still get a significant acceleration

enefiting from the XNOR-Bitcount operation. 

Different optimization-based methods represent different un-

erstandings of BNNs. Among the papers aiming to minimizing the

uantization error, many methods that directly reduce the quan-

ization error were proposed to make the binary neural networks

pproximate full-precision neural networks. These papers believed
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Table 5 

Object detection performance of binary neural networks on COCO 2017 

dataset. 

Topology Method 

Bit-Width 

(W/A) mAP (%) 

Faster-RCNN [128] 

ResNet-18 

FQN [65] 1/1 28.1 

Faster-RCNN [128] 

ResNet-34 

FQN [65] 1/1 31.8 

Faster-RCNN [128] 

ResNet-50 

FQN [65] 1/1 33.1 

RetinaNet [129] 

ResNet-18 

Quant whitepaper 

[130] 

8/8 22.6 

Integer-only [131] 8/8 19.7 

DoReFa-Net [60] 1/1 3.9 

XNOR-Net [58] 4/4 24.4 

XNOR-Net 

(Percentile) [65] 

4/4 26.7 

FQN [65] 4/4 28.6 

Table 6 

Object detection performance of binary neural networks on PASCAL VOC 2007 

dataset. 

Topology Method Bit-Width (W/A) mAP (%) 

Faster-RCNN [128] VGG Full-Precision 32/32 68.9 

BWN [64] 1/32 62.5 

BNN [64] 1/1 47.3 

Faster-RCNN [128] AlexNet Full-Precision 32/32 66.0 

BWN [64] 1/32 62.1 

BNN [64] 1/1 46.4 

SSD [132] DarkNet Full-Precision 1/32 62.1 

ELBNN [121] 2/2 62.4 

SSD [132] VGG-16 Full-Precision 32/32 62.1 

ELBNN [121] 2/2 46.4 

r  

a  

a  

n  

a  

T  

n  

F  

b  

p  
hat the closer the binary parameters are to full-precision param-

ters, the better the BNNs perform. Another idea is improving the

oss function. This type of methods makes the parameter distribu-

ion in BNNs friendly to the binarization operation by modifying

oss function. Moreover, STE proposed in BinaryConnect is rough,

hich results in some problems such as gradient mismatch. Thus

any recent works use smooth transition such as Tanh function to

educe the gradient loss, and it became a common practice to use

 smoother estimator. 

We believe binary neural networks should not be simply

egarded as the approximations of full-precision neural networks,

ore specific designs for the special characteristics of BNNs are

ecessary. In fact, some of the recent works essentially worked

n this such as XNOR-Net ++ [76] , CBCN [88] , Self-Binarizing

etworks [94] , BENN [67] , etc . The results show that specially

esigned methods considering characteristics of BNNs can achieve

etter performance. They prove the view that BNNs need different

ptimization compared with the full-precision models although

hey share the same network architecture. 

It is also worth mentioning that accuracy is not the only cri-

erion of BNNs, the versatility is another key to measure whether

 method can be used in practice. Some methods proposed in

xisting papers are very versatile, such as scale factors proposed in

NOR-Net [58] , smooth transition [90] , addition shortcuts [62] , etc .

he methods are versatile because of their simple implementation

nd low coupling. Thus they become common practices to improve

he performance of BNNs. Some methods improve the performance

f binary neural networks by designing or learning delicate quan-

izers. Such quantizers usually have stronger ability to preserve

he information. However, we have to point out that some of

hem suffer complicate computation and even multi-stage training

ipelines, which is sometimes unfriendly to hardware implemen-

ation and reproducibility. This means it is hard to acquire an

ffective speed up with such quantizers in real-world deployment.

herefore, purely pursuing high accuracy without considering

he acceleration implementation makes no sense in practice. The

alance between accuracy and speed is also an essential criterion

or binarization research that should be always kept in mind. 

.3. Other tasks 

It is worth noting that most of the current binary neural net-

orks that focus on image classification tasks cannot be directly

eneralized to other tasks. For different tasks, it is still highly
Table 7 

Semantic segmentation performance of binary neural ne

Topology Method 

Faster-RCNN ResNet-18 FCN-32s [122] Full-precis

LQ-Nets [6

Group-Net

Group-Net

Group-Net

Faster-RCNN ResNet-18 FCN-16s Full-precis

LQ-Nets [6

Group-Net

Group-Net

Group-Net

Faster-RCNN ResNet-34 FCN-32s Full-precis

LQ-Nets [6

Group-Net

Group-Net

Group-Net

Faster-RCNN ResNet-50 FCN-32s Full-precis

LQ-Nets [6

Group-Net

Group-Net

Group-Net
equired to design specific binary neural networks for the desir-

ble performance. In addition to image classification task, there

re also a few studies that designed and evaluated the binary

eural network models for other tasks, such as object detection

nd semantic segmentation tasks. For the object detection task,

ables 5 and 6 respectively list the performance of different binary

eural networks on the COCO 2017 and PASCAL VOC 2007 datasets.

or the semantic segmentation tasks, Table 7 compares different

inary neural networks on the PASCAL VOC 2012 dataset. The ex-

eriments are based on different bit-width and network structures.
tworks on PASCAL VOC 2012 dataset. 

Bit-Width (W/A) mAP (%) 

ion [122] 32/32 64.9 

1] 3/3 62.5 

 [122] 1/1 60.5 

 + BPAC [122] 1/1 63.8 

 

∗∗+ BPAC [122] 1/1 65.1 

ion [122] 32/32 67.3 

1] 3/3 65.1 

 [122] 1/1 62.7 

 + BPAC [122] 1/1 66.3 

 

∗∗+ BPAC [122] 1/1 67.7 

ion [122] 32/32 72.7 

1] 3/3 70.4 

 [122] 1/1 68.2 

 + BPAC [122] 1/1 71.2 

 

∗∗+ BPAC [122] 1/1 72.8 

ion [122] 32/32 73.1 

1] 3/3 70.7 

 [122] 1/1 67.2 

 + BPAC [122] 1/1 70.4 

 

∗∗+ BPAC [122] 1/1 71.0 



12 H. Qin, R. Gong and X. Liu et al. / Pattern Recognition 105 (2020) 107281 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

n  

p  

a  

t  

A

 

t  

P  

4  

D  

h

R

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

From Tables 5 and 6 we can see that existing binarization

algorithms have achieved encouraging progress for the object

detection task, and meanwhile bring the significant acceleration

when deployed in real-world systems. But it also should be noted

that the binary models still face a great challenge, especially when

the activations are quantized to 1-bit. For semantic segmentation

task, as shown in Table 7 , the very recent method [122] achieved

high accuracy using only 1-bit, which is almost the same as the

full-precision model. But it is unknown how it works and the

actual speed up of that method still needs to be verified. 

Among these results, we found that although the binary neural

networks perform well on the classification task, there are still

unacceptable losses on other tasks. This makes binary neural net-

works designed for classification tasks hard to be directly applied

to other tasks such as object detection and semantic segmentation.

In the classification task, the network pays more attention to the

global features, while ignoring the loss of local features caused

by binarization. However, local features are more important in

other tasks. So when designing binary neural networks for other

tasks, the local features of the feature map need to be paid more

attention. 

5. Future trend and conclusions 

The binary neural networks based on 1-bit representation enjoy

the compressed storage and fast inference speed, but meanwhile

suffer from the performance degradation. To bridge the gap be-

tween the binary and full-precision models, as we summarized

in this survey, there are various solutions proposed in recent

years, which can be roughly categorized into the naive and the

optimized. Our analysis shows that optimizing the binary network

using different techniques can promise better performance. These

techniques, derived from different motivations, mainly focus on

how to preserve the information in the forward propagation

and how to optimize the network in the backward propaga-

tion. It shows that retaining the various information in forward

and backward propagation is one of the key factors in training

high-performance BNNs. 

Although much progress has been made, existing techniques

for binary neural networks still face the performance loss, espe-

cially for the large network and datasets. The main reasons might

include: (1) It is still unclear what kind of network structure is

suitable for binarization, so that the information passing through

the network can be preserved, even after binarization. (2) it is

a difficult problem to optimize the binary network in a discrete

space, even we have the gradient estimator or approximate func-

tion for binarization. We believe more practical and theoretical

studies will emerge to answer the two questions in the future. 

Besides, as the mobile devices are becoming widely used in real

world, more research efforts will be devoted to the applications to

different tasks and deployment on different hardware. For exam-

ple, [40] proposed a novel rotation consistent loss considering the

open set characteristics of face recognition and achieves competi-

tive performance using 4-bit compared to the full-precision model.

Therefore, there will arise the interesting topics such as customiz-

ing or transferring binary networks for different tasks, designing

hardware-friendly or energy-economic binarization algorithms, etc .

In addition to weights and activations, quantizing the backward

propagation including gradients to accelerate the whole training

process has arisen as a new topic recently. The unified framework

proposed in [41] proves the possibility of 8-bit training of neural

networks from the accuracy and speed aspect. It is worthy to

further explore the feasibility of binarized backward calculation

for faster training time. 

Last but not the least, the research on explainable machine

learning indicates that there are critical paths in the prediction of
eural networks and different network structures follow different

atterns. So it is also meaningful to design mix-precision strategy

ccording to the importance of layer and devise new architectures

hat are friendly to the information flow of binary neural networks.
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