
Extremely Low-bit Convolution Optimization forQuantized
Neural Network on Modern Computer Architectures

Qingchang Han1,2∗ and Yongmin Hu1∗, Fengwei Yu2, Hailong Yang1†, Bing Liu2, Peng Hu1,2,
Ruihao Gong1,2, Yanfei Wang2, Rui Wang1, Zhongzhi Luan1, Depei Qian1

Beihang University1
SenseTime Research2

{qingchanghan,varinic,hailong.yang,wangrui,07680,depeiq}@buaa.edu.cn,gongruihao@nlsde.buaa.edu.cn
{yufengwei,liubing,hupeng,wangyanfei}@sensetime.com

ABSTRACT
With the continuous demand for higher accuracy of deep neural
networks, the model size has increased significantly. Quantization
is one of the most widely used model compression methods, which
can effectively reduce the model size without severe accuracy loss.
Modern processors such as ARM CPU and NVIDIA GPU have al-
ready provided the support of low-bit arithmetic instructions. How-
ever, there lack efficient and practical optimizations for convolution
computation towards extremely low-bit on ARM CPU (e.g., 2∼8-bit)
and NVIDIA GPU (e.g., 4-bit and 8-bit). This paper explores the per-
formance optimization methods of extremely low-bit convolution
on diverse architectures. On ARM CPU, we propose two instruction
schemes for 2∼3-bit and 4∼8-bit convolution with corresponding
register allocation methods. In addition, we re-design the GEMM
computation with data padding and packing optimizations. We also
implement winograd algorithm for convolution with some specific
bit width (e.g., 4∼6-bit) to achieve higher performance. On NVIDIA
GPU, we propose a data partition mechanism and multi-level mem-
ory access optimizations, to better adapt the computation to GPU
thread and memory hierarchy. We also propose quantization fu-
sion to eliminate unnecessary data access. The experiment results
demonstrate our implementations achieve better performance of
extremely low-bit convolution compared to the state-of-the-art
frameworks and libraries such as ncnn and cuDNN. To the best of
our knowledge, this is the first work that provides efficient imple-
mentations of extremely low-bit convolutions covering 2∼8-bit on
ARM CPU and 4-bit/8-bit on NVIDIA GPU.

CCS CONCEPTS
• Computer systems organization → Parallel architectures;
• Computing methodologies→ Artificial intelligence.

*The first and second author contributed equally. †Corresponding author.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ICPP ’20, August 17–20, 2020, Edmonton, AB, Canada
© 2020 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-8816-0/20/08. . . $15.00
https://doi.org/10.1145/3404397.3404407

KEYWORDS
Extremely Low-bit Convolution, Quantized Neural Network, Com-
putation Optimization, ARM CPU, NVIDIA GPU
ACM Reference Format:
Qingchang Han1,2∗ and Yongmin Hu1∗, Fengwei Yu2, Hailong Yang1†, Bing
Liu2, Peng Hu1,2, Ruihao Gong1,2, Yanfei Wang2, Rui Wang1, Zhongzhi
Luan1, Depei Qian1. 2020. Extremely Low-bit Convolution Optimization for
Quantized Neural Network on Modern Computer Architectures. In ICPP ’20:
International Conference on Parallel Processing, August 17–20, 2020, Edmonton,
AB, Canada. ACM, New York, NY, USA, 12 pages. https://doi.org/10.1145/
3404397.3404407

1 INTRODUCTION
Deep neural networks have been successfully adopted in many
fields, such as computer vision, natural language processing, auto-
matic driving, etc. With the increasing demand for higher accuracy,
the size of DNN models becomes larger, which requires tremen-
dous computation resources and memory footprint. The prohibitive
resource requirements of modern DNN models prevent their perva-
sive deployment on edge devices, where resources are constrained
by a limited power budget. Even in the cloud, deploying large DNN
models are also a burden for service operators due to the potential
of draining resources.

Since it is unsustainable with ever-increasing model size, sev-
eral methods have been proposed to reduce model size without
severely affecting its accuracy, such as network pruning [9, 10] and
model quantization [7, 8]. Particularly, the quantization method
takes advantage of the insensitivity of deep neural networks to data
precision, which converts floating-point data to low-bit data, and
accelerates model inference through low-bit computations. For ex-
ample, the commonly used 8-bit quantization can reduce the model
size to one forth than in full precision theoretically. In terms of ac-
curacy, it has been proven that an 8-bit quantized model can almost
reach the same accuracy as a full-precision one. Moreover, even
lower-bit quantized models (e.g., 2∼4-bit) only loss the accuracy
slightly compared to full-precision one [7].

Currently, both edge devices such as ARM CPU and cloud ac-
celerators such as NVIDIA GPU provide architecture support for
low-bit arithmetic instructions. For example, on ARMv8.1 CPU,
there are many instructions that allow to perform low-bit calcula-
tion efficiently, such as SMLAL, MLA, SADDW and etc. On the NVIDIA
Turing GPU, the Tensor Core unit can be used for 1-bit, 4-bit and
8-bit mixed-precision matrix multiplication through mma instruc-
tions [26], which can significantly boost the model inference. The

https://doi.org/10.1145/3404397.3404407
https://doi.org/10.1145/3404397.3404407
https://doi.org/10.1145/3404397.3404407

ICPP ’20, August 17–20, 2020, Edmonton, AB, Canada Han and Hu, et al.

availability of architecture support for low-bit computation on
modern processors stimulates the performance optimization of
quantized neural networks.

Several neural network inference frameworks and libraries have
provided optimized implementation for low-bit computation in
quantized neural networks leveraging the architecture support. For
example, QNNPACK [6], ncnn [23] and gemmlowp [14] support
8-bit convolution and GEMM on ARM CPU. Whereas on NVIDIA
GPU, tensorRT [22] supports 8-bit convolution using Tensor Core,
cuDNN [2] supports 16-bit convolution using Tensor Core and
8-bit convolution with dp4a instruction, and CUTLASS [25] only
supports low-bit GEMM with Tensor Core. Although the existing
works [25, 28] have explored low-bit GEMM on ARM CPU and
NVIDIA GPU, it does not intuitively transform to efficient low-
bit convolution implementation. To the best of our knowledge,
there is no public framework or library that can support extremely
low-bit convolution covering a wide range of bit width on ARM
CPU (2∼8-bit) and NVIDIA GPU (4-bit/8-bit). The missing support
for extremely low-bit convolution motivates this paper to provide
efficient implementations on processors such as ARM CPU and
NVIDIA GPU, where DNN models are widely deployed.

To implement the extremely low-bit convolution efficiently, there
are several challenges that need to be addressed on ARM CPU and
NVIDIA GPU, respectively. For example, on ARM CPU, no instruc-
tion can directly multiply low-bit data and accumulate to the 32-bit
data type. Therefore, customized instruction scheme needs to be
designed to accelerate low-bit computation through instruction
combinations such as SMLAL, MLA and SADDW. In addition, the regis-
ter allocation method needs to be designed to accommodate the in-
struction scheme with reduced memory access overhead. Whereas
on NVIDIA GPU, although Tensor Core provides high-performance
micro GEMM kernel, we still need to adapt the computation to
GPU thread organization, optimize the data access across mem-
ory hierarchy and eliminate unnecessary data access, to achieve
satisfactory performance on low-bit convolution [21].

This paper presents the computation optimizations for achieving
extremely low-bit convolution for quantized neural networks on
ARM CPU and NVIDIA GPU efficiently. On ARM CPU, we propose
two instruction schemes that use SMLAL and SADDW instructions to
optimize 4∼8-bit convolutions, and MLA and SADDW instructions to
optimize 2∼3-bit convolutions respectively. We propose register
allocation methods tailored for the above instruction schemes. We
also re-design and optimize GEMM computation with data padding
and packing. We implement the winograd algorithm to accelerate
the convolution kernels with 4∼6-bit input. On NVIDIA GPU, we
propose a data partition mechanism that adapts to the GPU thread
organization. In addition, we present multi-level memory access op-
timizations, including coalesced memory access on global memory,
reordering access on shared memory, overlapped computation and
memory access using registers, and in-place calculation. Moreover,
we explore quantization fusion between different kernels to reduce
the amount of memory access. The experiment results demonstrate
our implementations of extremely low-bit convolutions outperform
the state-of-the-art frameworks and libraries.

To the best of our knowledge, this is the first work to present
efficient implementations of extremely low-bit convolutions cover-
ing a wide range of bit width on diverse architectures such as ARM
CPU (2∼8-bit) and NVIDIA GPU (4-bit/8-bit).

Specifically, this paper makes the following contributions:

• On ARM CPU, we propose two instruction schemes that
use available instructions wisely to optimize 2∼3-bit and
4∼8-bit convolution kernels, and design register allocation
methods tailored for the instruction schemes. We also re-
design the GEMM computation with data padding and pack-
ing optimizations. In addition, we implement the winograd
algorithm to optimize 4∼6-bit convolution kernels.
• On NVIDIA GPUs, we propose a data partition mechanism
to adapt the computation to GPU thread organization better.
In addition, we propose multi-level memory access optimiza-
tions to improve the performance of data access across the
GPU memory hierarchy. Moreover, we exploit quantization
fusion to eliminate the overhead of storing intermediate re-
sults between consecutive kernels such as convolution and
dequantization.
• We evaluate our implementations on Raspberry Pi 3B and
NVIDIA RTX 2080Ti with ResNet-50. On ARM CPU, our
2-bit and 4-bit convolution kernels achieve 1.60× and 1.38×
speedup on average, respectively, compared to 8-bit convo-
lution in ncnn. On NVIDIA GPU, our 4-bit and 8-bit convo-
lution kernels achieve 5.26× and 4.31× speedup on average,
respectively, compared to 8-bit convolution in cuDNN.

The rest of the paper is organized as follows: Section 2 introduces
the background of our work. Section 3 and Section 4 present the
details of our extremely low-bit convolution optimizations on ARM
and GPU, respectively. Section 5 presents the experimental results.
Section 6 discusses the related work. Section 7 concludes this paper.

2 BACKGROUND
2.1 Quantized Deep Neural Network
Quantized Neural Networks (QNNs), serving as an effective tech-
nique to accelerate the DNN inference, have attracted considerable
research interests in recent years. On the large scale ImageNet
dataset [4], the algorithms proposed in [8] and [7] have achieved
the same accuracy as the full-precision counterpart using 4-bit and
even 3-bit, with minor accuracy degradation (less than 1%). For
more complex tasks such as object detection and face recognition,
QNNs have also been proved to be promising in terms of accuracy.
For example, Li et al. [18] applied 4-bit full quantization to object
detection and the proposed training techniques guarantee an out-
standing performance (32.5% mAP on COCO dataset [19]). [33]
devises a rotation consistent loss to retain the compactness of clus-
ter for the open-set problem and the verification accuracy for 3-bit
(98.73%) is competitive to that of the full-precision model (98.9%),
which firstly proves the feasibility of extremely low-bit face recog-
nition. Although QNNs can perform well under extremely low-bit
setting, there are little efforts to provide an efficient implementa-
tion for them. As far as we know, the existing high performance
inference libraries [14, 22, 23] mainly focus on the 8-bit convolution
operation, and none of them supports lower bit-width such as 2-bit

Extremely Low-bit Convolution Optimization for Quantized
Neural Network on Modern Computer Architectures ICPP ’20, August 17–20, 2020, Edmonton, AB, Canada

and 4-bit. It is necessary to further explore the specific optimization
of lower bit-width for higher performance.

2.2 Convolution Algorithms
The convolution neural networks (CNNs) take a large portion of the
DNN family [20]. The convolution layers dominate the inference
time of CNN. We elaborate on the popular algorithms used to
implement convolution calculations.

Direct convolution algorithm. This algorithm uses the defi-
nition of convolution to calculate the output through nested loops.
It is simple to implement but inefficient. In real cases, the method
is generally optimized to use better the cache and SIMD instruc-
tions of the hardware platform. The direct convolution algorithm
is adopted in cuDNN, DNNL [13], TVM [1] and etc.

GEMM-based convolution algorithm. The algorithm con-
verts convolution to matrix multiplication (GEMM) through im2col
operation and exploits the highly optimized BLAS [5] libraries
on various platforms. The GEMM-based methods can be further
divided into two categories, such as explicit GEMM and implicit
GEMM [15]. On ARM CPU, most frameworks such as Caffe and
ncnn adopt the explicit GEMM method, which performs global
im2col transformation and applies GEMM on the entire matrices.
However, on GPU, the explicit GEMMmethod requires extra global
memory space to store the transformed matrix. Therefore, the im-
plicit GEMM method [2] has been proposed to divide the matrix
into small tiles and perform the local conversion in each thread
block, avoiding global matrix transformation and reducing memory
footprint. Moreover, the implicit-precomp GEMM method [2] has
been proposed to reduce computation overhead through precom-
puting the indexes of data in the input matrix, which has been
adopted by cuDNN and TensorRT.

Fast convolution algorithm. The commonly used fast convo-
lution algorithms include FFT-based convolution algorithm [32]
and winograd convolution algorithm [17]. The FFT-based convolu-
tion algorithm uses FFT, IFFT, and GEMM operations to speedup
convolution calculations, which achieves better performance with
large kernels, and has been used in cuDNN. The winograd convo-
lution algorithm is based on the Coppersmith–Winograd matrix
multiplication algorithm. It trades off the increasing number of
additions with the decreasing number of multiplications through
matrix transformation for better performance. It is usually applied
to convolution kernel with a size of 3 × 3, and has been adopted in
various deep learning frameworks and libraries, such as ncnn.

In this paper, we focus on optimizing the extremely low-bit
convolution using GEMM-based algorithm, which has been widely
adopted in existing frameworks and libraries. Specifically, we choose
the explicit GEMM on ARM CPU [16] and the implicit-precomp
GEMM on NVIDIA GPU [15] to implement the GEMM-based con-
volution. We also implement winograd convolution algorithm in
cases (e.g., 4∼6-bit on ARM CPU) where it can be applied to boost
the performance.

2.3 Architecture Support for Low-bit
Computation

ARM CPUs have been widely used as mobile or edge devices to de-
ploy quantized models. ARMv8 architecture introduces the aarch64

execution state and supports A64 instruction set. There are 31 64-bit
general-purpose registers and 32 128-bit vector registers on ARMv8
architecture. In the latest ARMv8.2 architecture, SDOT instruction is
introduced to support dot product calculation with 8-bit input and
32-bit output. However, ARMv8.1 is still the dominant architecture
among existing ARM devices [29], so we focus our extremely low-
bit convolution optimization on ARMv8.1 specifically. Currently,
there is no instruction available on ARMv8.1 architecture that can
directly support low-bit (e.g., 2∼7-bit) multiply-accumulate opera-
tion heavily used in convolution. The existing lowest-bit multiply-
accumulate instructions are 8-bit SMLAL and MLA. These two in-
structions both take in 8-bit input data, but generate 16-bit and
8-bit output, respectively. Therefore, we can leverage the above
two instructions to realize extremely low-bit multiply-accumulate
operation. In addition, the SADDW instruction supports accumulating
8-bit and 16-bit input data to 16-bit and 32-bit computation results,
respectively. Therefore, we can use SADDW instruction to increase
the bit width for the final results in 32-bit.

NVIDIA GPU is the most widely used computing platform for
both training and deploying DNNmodels. NVIDIA Volta and Turing
architectures introduce Tensor Cores, which can provide mixed-
precision computing capabilities for DNN inference. Turing Tensor
Cores support mixed-precision matrix multiplication for 1 bit, 4
bits and 8 bits. Developers can use Tensor Core through CUDA
WMMAAPI, mma instructions in PTX ISA [26], and libraries such as
cuBLAS and cuDNN. The fragments of WMMAAPI are transparent
to developers, making it difficult to utilize data locality. Moreover,
current libraries do not support 4-bit and 8-bit calculations with
Tensor Core. Compared to WMMA API, mma instructions support
more flexible sizes for matrix multiplication and enable program-
mers to manage registers explicitly. Therefore, we choose to use
mma instructions to utilize Tensor Core.

The practical demands [8, 18, 33] motivate our selection of 2∼8-
bit convolution for optimization. On ARM, the 8-bit instructions
(e.g., MLA/SMLAL) support 8/16-bit output, which leaves optimiza-
tion opportunities for wider bit range of 2∼8-bit. Whereas on
GPU, the natively supported 4/8-bit instructions (e.g., mma.m8n8k32/
mma.m8n8k16) accumulate results to 32-bit registers, which leaves
no room for performance optimization other than 4/8-bit convolu-
tion.

3 OPTIMIZATION METHODS ON ARM CPU
3.1 Optimization Consideration
Although there are libraries and frameworks, such as gemmlowp
and ncnn, which have implemented 8-bit optimization with 16-
bit SMLAL instruction, to provide efficient implementation towards
extremely low-bit convolution (e.g., below 8-bit), there are still
challenges to address on ARM CPU.

Re-designing and optimizingGEMM.OnARMCPU, the load
instruction is much slower than arithmetic instruction. To improve
the arithmetic intensity of GEMM-based convolution, we need to
re-design the GEMM algorithm to perform more arithmetic calcu-
lations per load instruction. In addition, we also need to apply data
padding and packing optimization to enable continuous data access
for better performance.

ICPP ’20, August 17–20, 2020, Edmonton, AB, Canada Han and Hu, et al.

Determining appropriate low-bit instructions. The ARM
CPU provides no available instructions to support extremely low-
bit convolution. Instead, we need to utilize 8-bit (e.g., SMLAL and MLA)
and 16-bit (e.g., SADDW) instructions for realizing convolution below
8-bit. In addition, we need to consider the numerical range of the
quantized data to determine the appropriate instruction schemes
for efficient low-bit convolution.

Optimizing register allocation. On ARM CPU, the overhead
of data movement between registers is much smaller than between
cache and registers. With such a performance feature, using the
registers efficiently can reduce the number of cache accesses, and
thus increase the performance of low-bit convolution. Therefore, we
need to optimize the register allocation method, specially tailored
for different low-bit instruction schemes.

Applyingwinograd algorithm.The core computation ofwino-
grad convolution is still the multiplication and addition. However,
before the multiply-add calculation, the input and the weight of the
convolution are applied with two linear transformations, which
increases the numerical range of input and weight. Therefore, we
can only apply winograd algorithm for further optimizing the con-
volution on a limited range of low bits (e.g., 4 to 6-bit).

3.2 Re-desgining GEMM Computation
Re-desgining GEMM algorithm. The GEMM-based convolution
is an effective method to convert direct convolution to GEMM,
and we optimize it on ARM CPU. However, traditional GEMM
requires a large number of load instructions. We re-design the
GEMM algorithm to reduce the load instructions and improve the
computation intensity for better performance.

Fig. 1 (a) shows a traditional GEMM, where A and B areM × K
and K × N matrices, respectively, and C is aM × N matrix. The re-
designed GEMM algorithm is shown in Fig. 1 (b). First, we allocate
Buffer A, Buffer B and Buffer C in registers. When traversing the
common dimension K, we read data from column k of Matrix A (0
<= k < K) into Buffer A as va , and read data from row k of Matrix
B (0 <= k < K) with each element replicated M times into Buffer
B as vb_i . Then we perform element-wise multiplication between
va and each vector in vb_i to obtain a M × N temporary matrix
stored in Buffer C, and accumulate the data in Buffer C into Matrix
C. By traversing the dimension K and accumulating all temporary
results, we can derive Matrix C.

Here, we briefly analyze the number of load and arithmetic in-
structions required by the traditional and our re-designed GEMM.
We define θ1 as the amount of data that a single SIMD instruction
can operate on, β1 represents the two load instructions reading the
two matrices, and β2 represents the number of multiply-accumulate
instructions required to operate on two SIMD registers. LD is the
number of load instructions, CAL is the number of arithmetic in-
structions, and δ is the number of reduced sum instructions (con-
stant number), which is much smaller thanK. For traditional GEMM
in Fig. 1 (a), LD and CAL is calculated using Eq. 1 and Eq. 2 respec-
tively.

LD = β1 ×
M × N × K

θ1
(1)

CAL = β2 ×
M × N × K

θ1
+ β2 ×

M × N

θ1
×δ ≈ β2 ×

M × N × K

θ1
(2)

Whereas for the re-designed GEMM in Fig. 1 (b),θ2 represents the
maximum number of elements operated by a single load-replicate
instruction (e.g., 4 with LD4R). LD and CAL is calculated using Eq. 3
and Eq. 4 respectively.

LD = β1 ×
M × N × K

θ2 × θ1
= β1 ×

M × N × K

4 × θ1
(3)

CAL = β2 × θ2 ×
M × N × K

θ2 × θ1
= β2 ×

M × N × K

θ1
(4)

As we can see, the re-designed GEMM requires much few load
instructions than traditional GEMM, and the CAL

LD is about 4× of
traditional GEMM. The above advantage enables the re-designed
GEMM to achieve better performance on ARM CPU.

A11 A12 A13

A21 A22 A23

A31 A32 A33

B11 B12 B13

B21 B22 B23

B31 B32 B33

C11 C12 C13

C21 C22 C23

C31 C32 C33

X =

A11 A12 A13

A21 A22 A23

A31 A32 A33

A11

A21

A31

B11 B12 B13

B21 B22 B23

B31 B32 B33

C11 C12 C13

C21 C22 C23

C31 C32 C33

B11 B12 B13

B11 B12 B13

B11 B12 B13

C11 C12 C13

C21 C22 C23

C31 C32 C33

A11
B11

A11
B12

A11
B13

A21
B11

A21
B12

A21
B13

A31
B11

A31
B12

A31
B13

Multiply Accumulate

Multiply

Element-
wise Produce

Accu-
mulate

Matrix A Matrix B Matrix C

Matrix CBuffer CBuffer BBuffer A

(a)

(b)

Replicate

Figure 1: TheGEMMcomputation, (a) traditionalGEMMand
(b) our re-designed GEMM.

Data padding and packing optimization. To optimize data
access of the GEMM kernel, we take na elements from the k-th
column of Matrix A and nb elements from the k-th row of Matrix
B. When M is not a multiple of na , and N is not a multiple of nb ,
it is necessary to pad the matrix for better performance (e.g., zero
padding). Taking Fig. 2 for example,Matrix A andMatrix B are both
3 × 3 matrices. Assuming na and nb is set to 4, and both Matrix A
and Matrix B are in row-major order, we need to first zero padding
both matrices to a multiple of 4, and then perform data packing to
allow continuous data access. As shown in Fig. 2, we allocate Buffer
A and Buffer B, and copy na elements from Matrix A into Buffer
A in column-major order each time, and copy nb elements from
Matrix B into Buffer B in row-major order each time. After the data
padding and packing optimization, continuous data access can be
achieved for improving the performance of matrix multiplication
addition kernel.

Extremely Low-bit Convolution Optimization for Quantized
Neural Network on Modern Computer Architectures ICPP ’20, August 17–20, 2020, Edmonton, AB, Canada

A11 A12 A13

A21 A22 A23

A31 A32 A33

B11 B12 B13

B21 B22 B23

B31 B32 B33

0 0 0

0

0

0

A11 A21 A31 0 A12 A22 A32 0 A13 A23 A33 0

B11 B12 B13 0 B31 B32 B33 0B21 B22 B23 0

Padding and Packing Padding and Packing

Matrix A Matrix B

Buffer_A

Buffer_B

Figure 2: Illustrative example for data padding and packing
optimization.

3.3 Instruction and Register Allocation
Optimization

Optimized instruction schemes for GEMM. We propose two
instruction schemes for optimizing the low-bit GEMM as shown
in Fig. 3. For 4 to 8-bit GEMM, we choose SMLAL and SADDW in-
structions, and for 2 to 3-bit GEMM, we choose MLA and SADDW
instructions. As shown in Fig. 3 (a), 4 to 8-bit input data is loaded
into 8-bit registers. The SMLAL instruction multiplies the data in
8-bit registers and accumulates the results to a 16-bit register. The
above process continues until the data in 16-bit register saturates.
Then, the SADDW instruction accumulates data in a 16-bit register
to a 32-bit register for the final results. To achieve better perfor-
mance, we need to control the ratio of SMLAL to SADDW instruction
for higher computation intensity during the low-bit GEMM. Con-
sider two b-bit signed numbers, the SMLAL instruction needs to be
executed 216−1−1

(−2b−1)2 times before transferring the result to a 16-bit reg-
ister by SADDW. For 8-bit data, we adjust its value range to [-127,127],
so that two SMLAL instructions are executed before applying SADDW
instruction. Similarly, we can adjust the data range of other low-bit
data. In our implementation, for 4, 5, 6, 7 and 8-bit GEMM, the
ratio of SMLAL (8-bit register) to SADDW (16-bit register) instruction
is 511/1, 127/1, 31/1, 8/1 and 2/1, respectively. Based on the above
quantitative analysis, our instruction scheme achieves better per-
formance towards lower-bit GEMM. Fig. 3 (b) shows the instruction
scheme for 2 to 3-bit GEMM. The 2 to 3-bit input data is first loaded
into 8-bit registers, and then MLA instruction multiplies the data in
8-bit registers and accumulates results into an 8-bit register. The
above process continues until the data in the 8-bit register saturates.
We control the ratio of MLA (8-bit register) to SADDW (16-bit register)
as 31/1 and 7/1 for 2 and 3-bit GEMM, respectively. A similar trend
is also observed that our instruction scheme works better with
lower-bit GEMM.

Register allocation optimization.We also propose register al-
location optimizations to accommodate different instruction schemes
for low-bit GEMM. For 4 to 8-bit GEMM, v0 ~v1 are used to read
Matrix A, v2 ~v9 are used to read Matrix B, v10 ~v17 are used to
store temporary 16-bit results, and v18 ~v31 and x0 ~x3 are used to
store the final 32-bit results. Alg. 1 shows the detailed process of
GEMM kernel for 4 to 8-bit data, assuming na and nb equals to 16

…

…

…
SMLAL SADDW16x8bit 8x16bit 4x32bit

until overflow until overflow

16x8bit4~8-bit

4~8-bit

…

… …
SADDW

SADDW
16x8bit

8x16bit

4x32bit

until overflow

until overflow

16x8bit2~3-bit

2~3-bit

…
16x8bitMLA

until overflow

(a)

(b)

Figure 3: The optimized instruction schemes for 4∼8-bit
GEMM (a), and for 2∼3-bit GEMM (b).

and 4 respectively during the data padding and packing optimiza-
tion. The LD1 instruction fetches 16 8-bit data into a single register
(line 3 and line 6) each time. The LD4R instruction fetches 4 8-bit
data to 4 registers each time and replicates the data 16 times in
each register (line 4 and line 7). We put v0 and v2 ~v5 into a group,
and v1 and v6 ~v9 into another group. Both groups can get data
from Matrix A and B and accumulate the results to v10 ~v17 (line 5
and line 8). In addition, we interleave the {LD1, LD4R} and SMLAL
(2) instructions (line 3-8) for realizing data prefetching. To further
expose instruction-level parallelism, we apply loop unrolling to
loop K with unrolling_factor set to 32, 24, 16, 8 and 2 for 4, 5, 6,
7 and 8-bit GEMM, respectively. For 2 to 3-bit GEMM, we choose
the MLA instruction, that exhibits twice computation throughput
than SMLAL instruction. Due to the much better performance with
MLA instruction, we use a simpler register allocation mechanism
in this scenario, In the simplified mechanism, v0 ~v3 are used to
read Matrix A, v4 ~v7 are used to read Matrix B. The MLA instruc-
tion multiplies the input data and accumulates results to v8 ~v11,
which are used to store temporary 8-bit results. SADDW instruction
accumulates data in v8 ~v11 into v12 ~v19, which store temporary
16-bit results. Then the SADDW instruction continues to accumulate
16-bit results to final 32-bit register in v20 ~v31 and x0 ~x7.

3.4 Winograd Optimization
Winograd fast convolution algorithm can be applied to the smaller
convolution kernel for acceleration. In this paper, we choose to
implement F (2× 2, 3× 3) winograd algorithm, which is suitable for
convolution calculation with a kernel size of 3 and stride of 1, and
can calculate 2 × 2 results at one time.

As showed in Eq. 5, the winograd algorithm uses three transfor-
mation matrices G , B and A, where G applies to the weight д and B
apply to the input data d . The transformedGдGT and BTdB can be
calculated directly by element-wise multiplication. After AT and A
transformation, the convolution results can be obtained.

Y = AT [[GдGT] ⊙ [BTdB]]A (5)
In the winograd algorithm with kernel size of F (2 × 2, 3 × 3), the

transformation of matrixG applied to the weight will increase the
numerical range of weight by 9/4 times. Similarly, the numerical
range of input will increase by 4× after the transformation of matrix
B. For the F (2 × 2, 3 × 3) winograd, in order to ensure that the data
is still within the range of 8-bit precision, we limit the activation

ICPP ’20, August 17–20, 2020, Edmonton, AB, Canada Han and Hu, et al.

Algorithm 1 The 4∼8-bit GEMM kernel with register allocation
optimization
Input: Padding_and_Packing { Matrix A and Matrix B }
1: while k > 0 do
2: ...
3: LD1 { v0 } addr_Matrix_A
4: LD4R { v2 ~v5 } addr_Matrix_B
5: SMLAL(2) { v10 ~v17 } { v1 } { v6 ~v9 }
6: LD1 { v1 } addr_Matrix_A
7: LD4R { v6 ~v9 } addr_Matrix_B
8: SMLAL(2) { v10 ~v17 } { v0 } { v2 ~v5 }
9: ...
10: MOV { v0, v1 } { { x0, x1 }, { x2, x3 } }
11: SADDW(2) { v18 ~v31 } { v10 ~v16 }
12: SADDW(2) { v0, v1 } { v17 }
13: MOV { { x0, x1 }, { x2, x3 } } { v0, v1 }
14: k ← k − unrollinд_f actor
15: end while
16: MOV { v0, v1 } { { x0, x1 }, { x2, x3 } }
17: ST1 { { v18 ~v31 }, { v0, v1 } } addr_Matrix_C

and weight to no more than 6 bits. And we do not apply winograd
algorithm with F (4 × 4, 3 × 3), due to the unacceptable increment
of numerical range afterG and B transformation. In addition, con-
sidering that the maximum speedup of F (2 × 2, 3 × 3) winograd
algorithm is 2.25× theoretically without taking linear transforma-
tion overhead into account. In the meanwhile, MLA instruction (used
in GEMM-based convolution) is 2× faster than SMLAL instruction
(used in winograd-based convolution), which offsets the perfor-
mance advantage of winograd at 2 to 3-bit convolution. Therefore,
we focus on applying F (2 × 2, 3 × 3) on 4 to 6-bit convolution.

4 OPTIMIZATION METHODS ON NVIDIA
GPU

4.1 Optimization Consideration
To achieve extremely low-bit convolution efficiently on GPU, we
need to address the following challenges regarding GPU computa-
tion and memory hierarchies.

Adapting computation to GPU thread organization. The
threads on GPU are organized at different granularities such as
grid, block, and warp. In order to fully utilize GPU’s computation
resources, especially the powerful Tensor Cores, we need to design
a data partition mechanism adapting the calculation of GEMM to
the thread organization efficiently.

Optimizing data access across memory hierarchy. There
are various memory layers on GPU that differ in terms of latency,
bandwidth and capacity. It is essential to optimize the data access
pattern to exploit the characteristics ofmemory hierarchy for higher
memory bandwidth and lower memory latency. Besides, adopting
software prefetching during GEMM is also essential to hide the
long latency of global memory access.

Eliminating intermediate results. Eliminating the need for
storing the intermediate results into global memory on GPU can
deliver significant performance benefits for consecutive calcula-
tions in quantized neural networks. We exploit several ways of

quantization fusion across different computation kernels for better
performance.

4.2 Data Partition along with Thread Hierarchy
After converting the convolution to GEMM, we apply a data par-
tition mechanism to assign the calculation to the GPU execution
units at different thread hierarchy. Our implementation of implicit-
precomp GEMM-based convolution kernel is shown in Alg. 2. We
store the offsets of elements instead of the pointers in the precom-
puted buffer. The advantage is that the offset calculation process
only needs to be done once for a specific shape and can be regarded
as the pre-processing of the kernel. When loading the data of matrix
A, we first get the offset of the data from the precomputed buffer
and then load it directly from the input array.

Algorithm 2 Implicit-precomp GEMM-based Conv2D
Input: Shape of convolution and pointers of input, weight and

output. The precomputed buffer.
Tiling Parameters: MTile, NTile, KTile, KStep, blockRowWarp-

Num and blockColWarpNum.
1: compute KTileNum, KStepNum, MFrag, NFrag, warpRowNum

and warpColNum;
2: for k_outer in KTileNum do
3: load A_Tile to shared memory by precomputed buffer;
4: load B_Tile to shared memory;
5: __syncthreads();
6: for k_inner in KStepNum do
7: load A_Fragment to register;
8: load B_Fragment to register;
9: for row in WarpRowNum do
10: for col in WarpColNum do
11: compute C_Fragment by mma instruction;
12: end for
13: end for
14: end for
15: add bias and re-quantize on register;
16: store C_Fragment to global memory;
17: end for

We propose a data partition mechanism that partitions the ma-
trices at grid-level, block-level and warp-level and stores the sub-
matrices on global memory, shared memory and registers corre-
spondingly, as shown in Fig. 4. At the grid-level, we divide the
matrix C into tiles with parameters MTile and NTile, and assign
each tile to one thread block. Similarly, the matrix A and B are
also partitioned based on parameter KTile. At the block-level, we
partition the sub-matrix C_Tile into fragments based on parameters
blockRowWarpNum and blockColWarpNum, which represents the
number of rows and columns of the warps in the thread block, re-
spectively. Then we assign each fragment to one warp. To avoid the
value of KTile is too large, which prevents the matrix A_Fragment
and B_Fragment from being accommodated in the warp due to
insufficient registers, we use the factor KStep to split KTile to fit in
the warp. At the warp-level, each warp executes on Tensor Core
through mma instruction to perform the matrix multiplication (line
9~13 in Alg. 2).

Extremely Low-bit Convolution Optimization for Quantized
Neural Network on Modern Computer Architectures ICPP ’20, August 17–20, 2020, Edmonton, AB, Canada

Matrix B
(GMEM)

M

N

M

K

K N

Matrix A
(GMEM)

Matrix C
(GMEM)

C_Fragment
(Register)

B_Fragment
(Register)

A_Fragment
(Register)

MFragMFrag

KStep

NFrag

NFrag

KStep

(a) Grid-Level (b) Block-Level (c) Warp-Level

C_Tile
(Register)

B_Tile
(SMEM)

A_Tile
(SMEM)

MTileMTile

KTile

KTile

NTile

NTile

Figure 4: Data partition mechanism along the thread hier-
archy on GPU. GMEM and SMEM represent global memory
and shared memory, respectively.

4.3 Multi-level Memory Access Optimization
We propose multi-level memory access optimizations, including
coalesced access on global memory, reordering access on shared
memory, overlapped computation, and data access using registers
and in-place calculation. These optimizations reduce the data access
latency across layers of GPU memory.

Coalesced access on global memory. To optimize access to
global memory, we implement coalesced access by using appropri-
ate vector types to minimize memory transactions and maximize
the throughput of global memory. We allow each thread access con-
secutive 16 bytes to achieve coalesced access, where the memory
requests in the warp is divided into four independent 128-bytes
memory requests for four quarter-warps. In addition, we use built-in
vector types in CUDA, such as int4 and int2, to implement auto-
matic alignment and coalesced access. Since matrix A and B are
read-only, we further improve the performance of data access by
using read-only cache with __ldд() function.

Reordering memory access on sharedmemory.We reorder
the access pattern of matrix A and B on shared memory to increase
continuous data accesses of each thread. Here, we take 8-bit data
with mma8816 instruction for example. For this instruction, the
matrix A is accessed by thread 0∼31 through the data blocks (in
bold font) T0∼T31 as shown in Fig. 5 (a), where each data block is
4 bytes.

The common approach is that each thread performs stride mem-
ory access with four 4-bytes data blocks, as shown in Fig. 5 (a). Each
thread needs four LDS.32 instructions to perform the access. Our
optimization is to adjust the access order of threads so that each
thread achieves continuous memory access, as shown in Fig. 5 (b).
In this case, each thread accesses 4 blocks consecutively with a size
of 16 bytes. And each thread only needs one LDS.128 instruction
to perform the access, and the number of access instructions is
reduced to one-quarter of the original. The same reordering is also
applied to matrix B to guarantee the correct results.

Overlapped computation and memory access using regis-
ters.We utilize register to overlap mma calculation and global mem-
ory access. Specifically, we set up a temporal buffer of registers to
prefetch the data required for the next iteration, as shown in Fig. 6.
At the beginning of each iteration, the data of A_Tile and B_Tile in
this iteration is already in the temporal buffer, so we load the data
directly from the temporal buffer to shared memory (II). Then each
warp loads the data of A_Fragment and B_Fragment from shared

T0 T0 T0 T0 T1 T1 T1 T1 T2 T2 T2 T2 T3 T3 T3 T3
T4 T4 T4 T4 T5 T5 T5 T5 T6 T6 T6 T6 T7 T7 T7 T7

T28 T28 T28 T28 T29 T29 T29 T29 T30 T30 T30 T30 T31 T31 T31 T31

… …

K

M

T0 T1 T2 T3 T0 T1 T2 T3 T0 T1 T2 T3 T0 T1 T2 T3
T4 T5 T6 T7 T4 T5 T6 T7 T4 T5 T6 T7 T4 T5 T6 T7

T28 T29 T30 T31 T28 T29 T30 T31 T28 T29 T30 T31 T28 T29 T30 T31

… …

K

M

(a) Before Reordering

(b) After Reordering

Figure 5: Reordering memory access of matrix A on shared
memory. The blocks in bold font represent the data accessed
by the first mma instruction.

memory to register and executes mma calculation (III and IV). In the
meantime, the data in the temporary buffer is no longer needed so
that we can load the data required for the next iteration from global
memory in advance (I). With the help of the temporal buffer using
registers, we overlap memory access to global memory (I) with mma
calculation (IV), and thus improve the computation performance.

A_Tile
B_Tile

Shared
Memory

A_Fragment
B_Fragment
C_Fragment

Register

Matrix A
Matrix B
Matrix C

Global
Memory

Temp Buffer
Register

I

IV: mma computation

II

III

Figure 6: The overlapped computation and data access using
register buffer on GPU.

In-place calculation of bias and re-quantization. To further
optimize memory access, we perform the in-place calculation of
bias and re-quantization on registers. After finishing the mma cal-
culation as shown in Alg. 2 (line 2∼14), we directly apply bias and
re-quantization on the temporary data generated by mma calculation
(line 15), instead of writing it back to global memory first. After the
in-place calculation, due to the reduced data type from int32 to int8,
the amount of global memory accesses used to store C_Fragment
also reduces.

4.4 Quantization Fusion
To take advantage of computation fusion for better performance, we
exploit two ways of fusion in quantized neural networks. Generally,
the quantized neural network adds more layers around the convo-
lution layer. For example, the original convolution layer becomes:
quantization -> convolution (+re-quantization) -> dequantization ->
quantization -> ReLU -> dequantization. We apply the quantization
fusion regarding the above layer sequence.

ICPP ’20, August 17–20, 2020, Edmonton, AB, Canada Han and Hu, et al.

conv1 conv2 conv3 conv4 conv5 conv6 conv7 conv8 conv9 conv10

0.5

1

1.5

2

2.5

Sp
ee
du

p

6.6 33.9 23.2 24.2 11.8 25.3 21.1 42.2 22.2 11.0

ncnn-int8 Ours-int8 Ours-int7 Ours-int6 Ours-int5 Ours-int4 Ours-int3 Ours-int2

conv11 conv12 conv13 conv14 conv15 conv16 conv17 conv18 conv19

0.5

1

1.5

2

2.5

Sp
ee
du

p

31.5 20.8 41.3 21.1 10.8 33.1 21.0 41.7 20.8

Figure 7: The performance comparison between our optimized 2∼8-bit convolution kernels and ncnn 8-bit convolution kernel
(baseline) on Raspberry Pi 3B. The time above the first bar of each layer is the absolute execution time (ms) in baseline.

Fusion of convolution and dequantization.We combine the
calculation process of convolution and dequantization, skip storing
the intermediate results with int8 data type, and directly transform
the results from int32 to fp32. The fusion not only reduces accesses
to global memory but also reduces the overhead of launching mul-
tiple kernels.

Fusion of convolution and ReLU. Fusing the convolution and
ReLU kernels in quantized neural network enables us to skip the
dequantization and quantization calculations between the two ker-
nels, which eliminates the overhead of unnecessary computation
and memory access. We can fuse convolution and ReLU kernels
by changing the truncated range of re-quantization in convolution
kernel.

5 EVALUATION
5.1 Experiment Setup
We evaluate our implementation of extremely low-bit convolution
kernels on Raspberry Pi 3B and NVIDIA RTX 2080Ti. The specific
hardware and software configurations are shown in Tab. 1. We
evaluate all convolution layers in ResNet-50 [11] adopted from
Caffe Model Zoo. In addition, we also evaluate representative and
non-repetitive convolution layers from DenseNet-121 [12]. We
use the NCHW layout on ARM CPU and the NHWC layout on
NVIDIA GPU. We choose the 8-bit convolution kernels from ncnn
and cuDNN as the baselines on ARMCPU and NVIDIA GPU, respec-
tively. Currently, cuDNN does not support the 8-bit convolution
with Tensor Core. Thus we choose the 8-bit kernels with dp4a in
cuDNN as the baseline on GPU. In addition, we also compare with 8-
bit convolution in TensorRT through execution profile with trtexec
tools. The above frameworks and libraries represent the state-of-
the-art implementation of low-bit convolution to our knowledge.
To determine the optimal tiling parameters in the data partition
mechanism on GPU through auto-search, we use C++ template
to generate multiple kernels with different combinations of tiling
parameters and choose the best ones through profile runs. All exper-
iments in Section 5.3 use the optimal tiling parameters by default.
Note that the optimal tiling parameters only need to be determined

once per convolution shape with negligible overhead. Note that our
optimizations do not affect the accuracy of the model, which can
be guaranteed from two aspects: 1) model quantization, which has
been proven by existing studies [7, 18, 33] with slight accuracy loss
using low-bit linear quantization (e.g., 2∼4-bit). We apply the same
quantization scheme and thus can directly enjoy their accuracy
results; 2) low-bit convolution, which has been implemented with
overflow well addressed. Therefore, our optimized low-bit convolu-
tion kernels guarantee the same results as 32-bit computation. In
sum, there is no accuracy loss for the interest of this paper.

Table 1: Hardware and software configurations.

Platform ARM CPU NVIDIA GPU
Device Raspberry Pi 3B RTX 2080Ti
Architecture ARM Cortex-A53 NVIDIA Turing

TU102
Software Ubuntu 16.04 LTS

for Raspberry Pi,
gcc 5.4.0, ncnn with
commit 6f2ef19

Ubuntu 16.04 LTS,
gcc 5.4.0, CUDA 10.2,
cuDNN 7.6.5, Ten-
sorRT 7

5.2 Performance Improvement on ARM CPU
On Raspberry Pi 3B, we evaluate the performance of 2∼8-bit convo-
lution kernels. Fig. 7 shows the performance comparison between
our implementation and ncnn. We choose the batch size to 1 due
to the limited computation and memory resources on edge devices
such as ARM CPU, which is commonly adopted for performance
evaluation in existing works [30, 31]. The x-axis indicates the con-
volution layer, and the y-axis shows the speedup compared to the
baseline. As shown in Fig. 7, the highest speedups achieved by our
implementations from 2∼7-bit are 2.13×, 2.06×, 1.76×, 1.73×, 1.69×
and 1.54×, all of them appear in conv14 layer. The highest speedup
of our 8-bit implementation is 1.04× in conv9 layer. The perfor-
mance of our optimized 2∼8-bit convolution kernels exceeds ncnn
in 17, 17, 16, 15, 15, 14 and 2 out of 19 layers, respectively. In the lay-
ers with better performance, our 2∼8-bit implementations achieve

Extremely Low-bit Convolution Optimization for Quantized
Neural Network on Modern Computer Architectures ICPP ’20, August 17–20, 2020, Edmonton, AB, Canada

average speedups of 1.60×, 1.54×, 1.38×, 1.38×, 1.34×, 1.27× and
1.03×, respectively.

We notice that for 8-bit implementation, our optimization achieves
lower performance compared to ncnn for most of the cases. The
reason can be explained as follows. In ncnn, it stores the 8-bit input
into a 16-bit register, and uses 16-bit SMLAL instruction to compute
and accumulate the result to a 32-bit register. In our optimization,
we can apply two 8-bit SMLAL instructions to compute and accumu-
late in a 16-bit register, and then apply one 16-bit SADDW instruction
to accumulate in a 32-bit register. Since our optimization relies on
the high ratio of SMLAL to SADDW instructions (e.g., with lower-bit
input), and there is little room to perform more SMLAL instructions
with 8-bit input (due to data overflow), it constrains the perfor-
mance speedup of our optimization.

In addition, our optimized kernels show inferior performance on
two layers (e.g., conv1 and conv3) across all low-bits in Fig. 7. This
is because the convolution size of these layers is the smallest (1x1
kernel with 64 channels) compared to other layers. After applying
the matrix blocking for GEMM, the small block size constrains the
performance speedup due to the limited computation intensity.

As shown in Fig. 8, we compare the performance of our wino-
grad optimized convolution kernels with GEMM-based convolution
kernels and 8-bit convolution kernel in ncnn (baseline). Due to the
restriction of winograd algorithm (convolution kernel (3 × 3) with
the stride of 1), we show the performance results for all the layers
in ResNet-50 where winograd can be applied. The time above the
first bar of each layer is the absolute execution time (ms) in the
baseline. The performance of 4∼6-bit winograd implementations
outperforms the baseline and GEMM-based implementations in all
cases. The 4∼6-bit winograd implementations achieve a maximum
speedup of 1.73×, 1.66× and 1.52×, and an average speedup of
1.50×, 1.44× and 1.34×, respectively.

conv2 conv6 conv11 conv16

0.5
1

1.5
2

2.5

Sp
ee
du

p

33.9 25.3 31.5 33.1

ncnn-int8
gemm-int6

wino-int6
gemm-int5

wino-int5
gemm-int4

wino-int4

Figure 8: The performance comparison of our GEMM-based
andwinograd-based convolution kernels at 4∼6-bit input on
Raspberry Pi 3B.

We also compare the performance of our GEMM-based con-
volution kernel at 2-bit with TVM’s popcount-based solution [3]
(baseline), as shown in Fig. 9. For the 2-bit convolution, both input
data and weights are stored in 2-bit (A2W 2). For each convolution
layer implemented in TVM, we enable performance auto-tuning
for 100 trials according to [3]. The time above the first bar of each
layer is the absolute execution time (ms) in the baseline. Our 2-bit
implementation outperforms TVM inmost cases (16 out of 19 cases),
with the highest speedup of 2.11× (in conv11). For the cases our
implementation surpasses TVM, the average speedup is 1.78×.

conv
1
conv

2
conv

3
conv

4
conv

5
conv

6
conv

7
conv

8
conv

9
conv

10
conv

11
conv

12
conv

13
conv

14
conv

15
conv

16
conv

17
conv

18
conv

19

1

2

3

Sp
ee
du

p

4.8 53.6 14.7 23.1 12.4 40.3 13.2 42.3 20.9 11.0 42.7 20.4 41.0 20.3 10.4 52.3 20.5 42.2 20.7

tvm-A2W2 Ours-int2

Figure 9: The performance comparison of our implementa-
tion with TVM at 2-bit convolution (A2W 2) on Raspberry Pi
3B. The performance of TVM is chosen as baseline.

5.3 Performance Improvement on NVIDIA
GPU

We evaluate the performance of our optimized 4-bit and 8-bit convo-
lution kernels in the batch size of 1 and 16 on NVIDIA GPU. Fig. 10
shows the performance comparison between our implementations
and cuDNN on RTX 2080Ti. With the batch size of 1, the perfor-
mance of our 4-bit and 8-bit convolution kernels exceed cuDNN
in 18 out of 19 layers by an average speedup of 5.26× and 4.31×,
respectively. With the batch size of 16, our 4-bit and 8-bit convolu-
tion kernels outperform cuDNN in 17 and 16 out of 19 layers by an
average speedup of 3.45× and 2.44×, respectively. In most cases, our
4-bit (17 out of 19 layers) and 8-bit (15 out of 19 layers) convolution
kernels outperform 8-bit convolution kernels in TensorRT by an
average of 1.78× and 1.44× with the batch size of 1, respectively.
With the batch size of 16, our 4-bit kernels also outperform Ten-
sorRT in 12 layers by an average speedup of 1.46×. These results
demonstrate the effectiveness of our extremely low-bit convolution
optimization, especially in small batch sizes. In addition, our 4-bit
convolution kernels outperform 8-bit convolution kernels by 1.18×
and 1.32× on average with the batch size of 1 and 16, respectively.
The results reveal that our optimizations are more effective towards
lower bit convolution.

Compared to TensorRT, our kernels achieves similar perfor-
mance. After a thorough investigation of convolution kernels opti-
mized by our approach and TensorRT with NVIDIA Nsight Com-
pute kernel profiler [24], we have the following observations. For
the cases where our implementations achieve better performance
than TensorRT, we observe higher memory bandwidth utilization
with our approach. Since the TensorRT implementation is propri-
etary, our best guess for the reason is that our data partition scheme
along with the auto-search for optimal tiling size is more effective in
optimizing GPU memory access compared to TensorRT (especially
with small batch size). Whereas for the cases TensorRT achieves
better performance, we observe higher instruction-per-cycle and
SM utilization compared to our approach. The reason could be Ten-
sorRT has applied many low-level optimizations with heavily-tuned
SASS code.

We also notice that our implementation achieves better speedup
with small batch size (e.g., batch size= 1). This is because, with small
batch size, the tiling size has a significant impact on performance,
where our auto-search method with profile runs is more effective in
determining the optimal tiling size, thus improving both memory
access efficiency and thread-level parallelism.

Fig. 11 shows the performance improvement after using profile
runs to determine the optimal tiling parameters under the batch

ICPP ’20, August 17–20, 2020, Edmonton, AB, Canada Han and Hu, et al.

0

5

10

15

20

Sp
ee

du
p

17.6 30.7 17.5 17.9 16.9 46.2 18.3 24.0 24.1 85.6 16.9 41.7 164.1 41.1 24.0 76.6 17.2 41.5 24.1

(a) batch size = 1

cuDNN-int8
TensorRT-int8

Ours-int8
Ours-int4

conv1 conv2 conv3 conv4 conv5 conv6 conv7 conv8 conv9 conv10 conv11 conv12 conv13 conv14 conv15 conv16 conv17 conv18 conv19
0

2

4

6

8

Sp
ee

du
p

30.6 135.8 56.4 73.3 26.7 89.6 44.6 25.3 47.3 90.0 39.3 44.8 168.4 42.9 46.9 79.1 74.7 83.3 68.5

(b) batch size = 16

cuDNN-int8
TensorRT-int8

Ours-int8
Ours-int4

Figure 10: The performance comparison of our 8-bit and 4-bit convolution kernels and 8-bit convolution kernels of cuDNN
and TensorRT on RTX 2080Ti GPU. The 8-bit convolution with dp4a instruction in cuDNN is chosen as baseline. The time
above the first bar of each layer is the absolute execution time (us) in baseline.

conv
1
conv

2
conv

3
conv

4
conv

5
conv

6
conv

7
conv

8
conv

9
conv

10conv
11
conv

12
conv

13
conv

14
conv

15
conv

16
conv

17
conv

18
conv

19
0

2

4

6

8

Sp
ee
du

p

int8 w/o profile
int8 w/ profile

int4 w/o profile
int4 w/ profile

Figure 11: The performance improvement after profile runs
on RTX 2080Ti GPU (batch size = 1). The baseline is the 8-bit
implementation without profile runs.

size of 1. The w/o profile and w/ profile indicates the performance
using default parameters and optimal parameters, respectively. The
default parameters are usually selected based on programmer expe-
rience. The average speedup of 4-bit and 8-bit convolution kernels
with the profile runs enabled is 2.29× and 2.91×, respectively. The
performance results with the batch size of 16 show similar tendency,
which are omitted for brevity.

Moreover, we evaluate the performance improvement of quan-
tization fusion, including the fusion of convolution and dequan-
tization and fusion of convolution and ReLU, as shown in Fig.12.
The experiments use 8-bit convolution kernels with the batch size
of 1. Among all cases, the fusion of convolution and dequantiza-
tion achieves a 1.18× speedup on average, whereas the fusion of
convolution and ReLU achieves a 1.51× speedup on average. The
performance results with the batch size of 16 show similar tendency,
which are omitted for brevity.

5.4 Discussion of Space Overhead
OnGPU, we use the implicit-precompGEMMmethod, which avoids
using global memory to store the transformed matrix. Instead, only
the pre-computed buffer occupies few global memory spaces rang-
ing from 0.5 KB to 50 KB, which is negligible. Besides, our optimiza-
tion uses shared memory and registers for caching, which does not
consume extra global memory space.

0

1

2

3
Sp

ee
du

p

(a) Fusion of Convolution and Dequantization

Before fusion After fusion

conv
1
conv

2
conv

3
conv

4
conv

5
conv

6
conv

7
conv

8
conv

9
conv

10conv
11
conv

12
conv

13
conv

14
conv

15
conv

16
conv

17
conv

18
conv

19
0

1

2

3

Sp
ee
du

p

(b) Fusion of Convolution and ReLU

Before fusion After fusion

Figure 12: The performance improvement of quantization
fusion on RTX 2080Ti GPU (batch size = 1). The baseline is
the implementation without quantization fusion.

conv
1
conv

2
conv

3
conv

4
conv

5
conv

6
conv

7
conv

8
conv

9
conv

10conv
11
conv

12
conv

13
conv

14
conv

15
conv

16
conv

17
conv

18
conv

19
0

1

2

3

N
or

m
al
iz
ed

 M
em

or
y
O
ve

rh
ea

d

8.60 4.64 Baseline
Im2col

Padding_Packing

Figure 13: The space overhead of each layer for ResNet-50
after applying im2col, data padding and packing operations.
The baseline is space occupation of activation andweight for
each layer.

To understand the space overhead of our optimization on ARM,
we have analyzed the space occupation after applying im2col, data
padding and packing operations for each layer of ResNet-50. The
baseline is the space occupation of activation and weight for each

Extremely Low-bit Convolution Optimization for Quantized
Neural Network on Modern Computer Architectures ICPP ’20, August 17–20, 2020, Edmonton, AB, Canada

conv1 conv2 conv3 conv4 conv5 conv6 conv7 conv8
0.0

0.5

1.0

1.5

2.0

2.5

Sp
ee
du

p

2.9 1.0 9.2 48.9 14.8 32.6 44.7 6.7

ncnn-int8 Ours-int8 Ours-int7 Ours-int6 Ours-int5 Ours-int4 Ours-int3 Ours-int2

conv9 conv10 conv11 conv12 conv13 conv14 conv15 conv16
0.0

0.5

1.0

1.5

2.0

2.5

Sp
ee
du

p

15.1 22.5 3.0 7.6 11.6 1.4 2.0 2.7

Figure 14: The performance comparison between our optimized 2∼8-bit convolution kernels andncnn 8-bit convolution kernel
(baseline) in DenseNet-121 on Raspberry Pi 3B. The time above the first bar of each layer is the absolute execution time (ms)
in baseline.

conv1 conv2 conv3 conv4 conv5 conv6 conv7 conv8 conv9 conv10 conv11 conv12 conv13 conv14 conv15 conv16
0.0

2.5

5.0

7.5

10.0

Sp
ee
du

p

63.7 63.6 64.1 64.3 16.9 17.2 19.6 16.9 24.5 36.7 21.0 41.2 55.9 32.9 43.3 55.3

cuDNN-int8
TensorRT-int8

Ours-int8
Ours-int4

Figure 15: The performance comparison when applying our approach to optimize convolution kernels in DenseNet-121 on
RTX 2080Ti GPU (batch size = 1). The time above the first bar of each layer is the absolute execution time (us) in baseline.

layer. Fig 13 shows the space overhead for each layer of ResNet-50
compared to the baseline. The minimum, maximum and average
space overhead of im2col is 1.0218× (conv18), 8.6034× (conv2) and
1.9445×, respectively. The minimum, maximum and average space
overhead of data padding and packing is 1.0× (conv1∼14), 1.0058×
(conv2) and 1.0010×, respectively. In total, the space overhead of our
optimization on ARM ranges from 1.0232× to 8.6034×, with 1.9455×
on average. Note that the space overhead of im2col is determined
by convolution kernel size, stride, and input size, whereas the space
overhead of data padding and packing is determined by the size of
matrix generated through im2col and layer weight.

5.5 Applying to more CNN Models
To further demonstrate the applicability of our optimization, we
have evaluatedDenseNet-121model on bothARMCPU andNVIDIA
GPU. Fig. 14 shows the performance comparison for the convolu-
tion layers in DenseNet-121 on ARM CPU. Our 2∼7-bit kernels
achieve an average speedup of 1.79×, 1.74×, 1.56×, 1.50×, 1.51×
and 1.37× compared to ncnn, respectively. For the 8-bit convolution
kernels, our optimization exceeds ncnn in 6 out of 16 layers, with an
average speedup of 1.09×. Fig. 15 shows the performance compari-
son for the convolution layers in DenseNet-121 on NVIDIA GPU.
Our 4-bit and 8-bit kernels outperform 8-bit kernels of TensorRT
and cuDNN across all convolution layers. Specifically, compared to
TensorRT, our 4-bit and 8-bit kernels achieve an average speedup of

3.29× and 2.53×. We observe that our optimization achieves better
performance speedup on DenseNet-121 compared to ResNet-50. We
believe the reason is that the convolution shapes in DenseNet-121
are not commonly used (e.g., conv15 in DenseNet-121), and thus out
of the radar of TensorRT for heavy optimization (e.g., with SASS
code). However, our optimization can determine the optimal tiling
size through auto-search with profile runs, and better adapts to the
unusual convolution shapes for higher performance speedup.

6 RELATEDWORK
Low-bit computation optimization on ARM CPU. QNNPACK
is a high-performance kernel library, providing efficient implemen-
tations for convolution, deconvolution and fully connected layers,
which supports 8-bit quantization. ncnn provides the 8-bit convo-
lution using the GEMM-based method and winograd method, and
supports ARM Neon assembly-level optimization. gemmlowp is a
low-precision GEMM library that provides efficient implementa-
tions on ARM with Neon and Intel x86 with SSE 4.1. Lai et al. [16]
implements the CMSIS-NN kernels for low-bit neural network on
the Cortex-M processor. However, none of the above work supports
convolution kernels on ARM CPU below 8 bits.

Both Tulloch et al. [30] and Cowan et al. [3] use popcount instruc-
tions to optimize low-bit convolution kernels on ARM CPU. The
former proposes a low-bit convolution implementation, and the lat-
ter presents an automated approach to generate high-performance

ICPP ’20, August 17–20, 2020, Edmonton, AB, Canada Han and Hu, et al.

convolution kernels. However, the popcount instructions are usu-
ally used to realize low-bit convolution below 4-bit and in the cases
of higher bits, using popcount instruction cannot achieve better
performance compared to 8-bit baseline [30], whereas our optimiza-
tion methods can be applied to a wider range of low-bit convolution,
covering 2∼8-bit specifically.

Low-bit computation optimization on NVIDIA GPU. The
cuDNN library provides highly tuned kernels for DNN, such as
8-bit convolution using dp4a instruction. TensorRT is an SDK for
high performance deep learning inference on GPU, which supports
fast int8 inference. The above library and framework represent
the state-of-the-art 8-bit convolution implementation, but none of
them supports 4-bit convolution on GPU. CUTLASS [25] supports
low-bit GEMM with Tensor Core. But it doesn’t optimize convo-
lution kernels specifically. The MLPerf Inference Benchmark [27]
contains the only public reported 4-bit convolution implementation
in ResNet-50 on GPU, but it only provides a model binary file, which
cannot be used individually and compared with our 4-bit imple-
mentation. In addition, there are research works using Tensor Core
to accelerate low-bit computation in general. Markidis et al. [21]
analyze the performance and errors of GEMM calculation using
Tensor Core. Zhu et al. [34] propose an algorithm and hardware
co-design for sparse neural networks on Tensor Core.

7 CONCLUSION
In this paper, we explore extremely low-bit convolution optimiza-
tions and provide efficient implementations on ARM CPU and
NVIDIA GPU. Our evaluation demonstrates that our extremely
low-bit convolution kernels archive significant speedups compared
to the state-of-the-art implementations such as ncnn/TVM and
cuDNN/TensorRT. In the future, we would like to integrate our
low-bit convolution optimizations into deep learning frameworks
such as TVM to enable end-to-end optimization as well as explore
auto-tuning for better portability.

ACKNOWLEDGMENTS
This work was supported by SenseTime Research Fund for Young
Scholars and National Natural Science Foundation of China (No.
61502019 and No. 61732002).

REFERENCES
[1] Tianqi Chen, Thierry Moreau, Ziheng Jiang, Lianmin Zheng, Eddie Yan, Meghan

Cowan, Haichen Shen, Leyuan Wang, Yuwei Hu, Luis Ceze, et al. 2018. TVM:
an automated end-to-end optimizing compiler for deep learning. In Proceedings
of the 12th USENIX conference on Operating Systems Design and Implementation.
579–594.

[2] Sharan Chetlur, Cliff Woolley, Philippe Vandermersch, Jonathan Cohen, John
Tran, Bryan Catanzaro, and Evan Shelhamer. 2014. cudnn: Efficient primitives
for deep learning. arXiv preprint arXiv:1410.0759 (2014).

[3] Meghan Cowan, Thierry Moreau, Tianqi Chen, James Bornholt, and Luis Ceze.
2020. Automatic generation of high-performance quantized machine learning
kernels. In Proceedings of the 18th ACM/IEEE International Symposium on Code
Generation and Optimization. 305–316.

[4] Jia Deng,Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. 2009. Imagenet:
A large-scale hierarchical image database. In 2009 IEEE conference on computer
vision and pattern recognition. Ieee, 248–255.

[5] Jack J Dongarra, Jeremy Du Croz, Sven Hammarling, and Iain S Duff. 1990. A set
of level 3 basic linear algebra subprograms. ACM Transactions on Mathematical
Software (TOMS) 16, 1 (1990), 1–17.

[6] Marat Dukhan, Yiming Wu, and Hao Lu. 2018. QNNPACK: open source library
for optimized mobile deep learning. https://github.com/pytorch/QNNPACK.

[7] Steven K. Esser, Jeffrey L. McKinstry, Deepika Bablani, Rathinakumar Ap-
puswamy, and Dharmendra S. Modha. 2020. LEARNED STEP SIZE QUAN-
TIZATION. In International Conference on Learning Representations.

[8] Ruihao Gong, Xianglong Liu, Shenghu Jiang, Tianxiang Li, Peng Hu, Jiazhen Lin,
Fengwei Yu, and Junjie Yan. 2019. Differentiable soft quantization: Bridging full-
precision and low-bit neural networks. In Proceedings of the IEEE International
Conference on Computer Vision. 4852–4861.

[9] Song Han, Jeff Pool, John Tran, and William Dally. 2015. Learning both weights
and connections for efficient neural network. In Advances in neural information
processing systems. 1135–1143.

[10] Babak Hassibi and David G Stork. 1993. Second order derivatives for network
pruning: Optimal brain surgeon. In Advances in neural information processing
systems. 164–171.

[11] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2016. Deep residual
learning for image recognition. In Proceedings of the IEEE conference on computer
vision and pattern recognition. 770–778.

[12] Gao Huang, Zhuang Liu, Laurens Van Der Maaten, and Kilian Q Weinberger.
2017. Densely connected convolutional networks. In Proceedings of the IEEE
conference on computer vision and pattern recognition. 4700–4708.

[13] Intel. 2016. Deep Neural Network Library. https://github.com/intel/mkl-dnn.
[14] Benoit Jacob et al. 2017. gemmlowp: a small self-contained low-precision GEMM

library.(2017).
[15] Heehoon Kim, Hyoungwook Nam, Wookeun Jung, and Jaejin Lee. 2017. Per-

formance analysis of CNN frameworks for GPUs. In 2017 IEEE International
Symposium on Performance Analysis of Systems and Software (ISPASS). IEEE,
55–64.

[16] Liangzhen Lai, Naveen Suda, and Vikas Chandra. 2018. Cmsis-nn: Efficient neural
network kernels for arm cortex-m cpus. arXiv preprint arXiv:1801.06601 (2018).

[17] Andrew Lavin and Scott Gray. 2016. Fast algorithms for convolutional neural
networks. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition. 4013–4021.

[18] Rundong Li, Yan Wang, Feng Liang, Hongwei Qin, Junjie Yan, and Rui Fan.
2019. Fully Quantized Network for Object Detection. In The IEEE Conference on
Computer Vision and Pattern Recognition (CVPR).

[19] Tsung-Yi Lin, Michael Maire, Serge Belongie, Lubomir Bourdev, Ross Girshick,
James Hays, Pietro Perona, Deva Ramanan, C. Lawrence Zitnick, and Piotr Dollár.
2014. Microsoft COCO: Common Objects in Context.

[20] Weibo Liu, Zidong Wang, Xiaohui Liu, Nianyin Zeng, Yurong Liu, and Fuad E Al-
saadi. 2017. A survey of deep neural network architectures and their applications.
Neurocomputing 234 (2017), 11–26.

[21] Stefano Markidis, Steven Wei Der Chien, Erwin Laure, Ivy Bo Peng, and Jeffrey S
Vetter. 2018. Nvidia tensor core programmability, performance & precision. In
2018 IEEE International Parallel and Distributed Processing Symposium Workshops
(IPDPSW). IEEE, 522–531.

[22] Szymon Migacz. 2017. 8-bit inference with TensorRT. In GPU Technology Confer-
ence.

[23] nihui et al. 2017. NCNN. https://github.com/Tencent/ncnn.
[24] NVIDIA. 2019. NVIDIA Nsight Compute. https://developer.nvidia.com/nsight-

compute.
[25] CUTLASS NVIDIA. 2017. CUDA Templates for Linear Algebra Subroutines.

https://github.com/NVIDIA/cutlass.
[26] PTX NVIDIA. 2019. Parallel Thread Execution ISA version 6.5. NVIDIA Corpora-

tion (November 2019) (2019).
[27] Vijay Janapa Reddi, Christine Cheng, David Kanter, Peter Mattson, Guenther

Schmuelling, Carole-Jean Wu, Brian Anderson, Maximilien Breughe, Mark
Charlebois, William Chou, et al. 2019. Mlperf inference benchmark. arXiv
preprint arXiv:1911.02549 (2019).

[28] Günther Schindler, Manfred Mücke, and Holger Fröning. 2017. Linking appli-
cation description with efficient simd code generation for low-precision signed-
integer gemm. In European Conference on Parallel Processing. Springer, 688–699.

[29] SoftBank. 2017. Q4 2016 Roadshow Slides - Arm.(2017).
[30] Andrew Tulloch and Yangqing Jia. 2017. High performance ultra-low-precision

convolutions on mobile devices. arXiv preprint arXiv:1712.02427 (2017).
[31] Yaman Umuroglu and Magnus Jahre. 2017. Towards efficient quantized neural

network inference on mobile devices: work-in-progress. In Proceedings of the 2017
International Conference on Compilers, Architectures and Synthesis for Embedded
Systems Companion. 1–2.

[32] Nicolas Vasilache, Jeff Johnson, Michael Mathieu, Soumith Chintala, Serkan
Piantino, and Yann LeCun. 2014. Fast convolutional nets with fbfft: A GPU
performance evaluation. arXiv preprint arXiv:1412.7580 (2014).

[33] Yudong Wu, Yichao Wu, Ruihao Gong, Yuanhao Lv, Ken Chen, Ding Liang,
Xiaolin Hu, Xianglong Liu, and Junjie Yan. 2020. Rotation Consistent Margin
Loss for Efficient Low-bit Face Recognition. In The IEEE Conference on Computer
Vision and Pattern Recognition (CVPR).

[34] Maohua Zhu, Tao Zhang, Zhenyu Gu, and Yuan Xie. 2019. Sparse tensor core:
Algorithm and hardware co-design for vector-wise sparse neural networks on
modern gpus. In Proceedings of the 52nd Annual IEEE/ACM International Sympo-
sium on Microarchitecture. 359–371.

https://github.com/pytorch/QNNPACK
https://github.com/intel/mkl-dnn
https://github.com/Tencent/ncnn
https://developer.nvidia.com/nsight-compute
https://developer.nvidia.com/nsight-compute
https://github.com/NVIDIA/cutlass

	Abstract
	1 Introduction
	2 Background
	2.1 Quantized Deep Neural Network
	2.2 Convolution Algorithms
	2.3 Architecture Support for Low-bit Computation

	3 Optimization Methods on ARM CPU
	3.1 Optimization Consideration
	3.2 Re-desgining GEMM Computation
	3.3 Instruction and Register Allocation Optimization
	3.4 Winograd Optimization

	4 Optimization Methods on NVIDIA GPU
	4.1 Optimization Consideration
	4.2 Data Partition along with Thread Hierarchy
	4.3 Multi-level Memory Access Optimization
	4.4 Quantization Fusion

	5 Evaluation
	5.1 Experiment Setup
	5.2 Performance Improvement on ARM CPU
	5.3 Performance Improvement on NVIDIA GPU
	5.4 Discussion of Space Overhead
	5.5 Applying to more CNN Models

	6 Related Work
	7 Conclusion
	Acknowledgments
	References

