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Abstract

Recently low-bit (e.g., 8-bit) network quantization has

been extensively studied to accelerate the inference. Be-

sides inference, low-bit training with quantized gradients

can further bring more considerable acceleration, since the

backward process is often computation-intensive. Unfortu-

nately, the inappropriate quantization of backward propa-

gation usually makes the training unstable and even crash.

There lacks a successful unified low-bit training framework

that can support diverse networks on various tasks. In this

paper, we give an attempt to build a unified 8-bit (INT8)

training framework for common convolutional neural net-

works from the aspects of both accuracy and speed. First,

we empirically find the four distinctive characteristics of

gradients, which provide us insightful clues for gradient

quantization. Then, we theoretically give an in-depth anal-

ysis of the convergence bound and derive two principles

for stable INT8 training. Finally, we propose two universal

techniques, including Direction Sensitive Gradient Clipping

that reduces the direction deviation of gradients and Devi-

ation Counteractive Learning Rate Scaling that avoids ille-

gal gradient update along the wrong direction. The experi-

ments show that our unified solution promises accurate and

efficient INT8 training for a variety of networks and tasks,

including MobileNetV2, InceptionV3 and object detection

that prior studies have never succeeded. Moreover, it enjoys

a strong flexibility to run on off-the-shelf hardware, and re-

duces the training time by 22% on Pascal GPU without too

much optimization effort. We believe that this pioneering

study will help lead the community towards a fully unified

INT8 training for convolutional neural networks.

∗corresponding author
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Figure 1. The fundamental idea of our unified INT8 training. gx

and ĝx represent the original float gradient and the quantized one,

respectively. α and β represent different direction deviations that

quantization brings. The red lines present crash cases when the di-

rection deviation is large. The left subfigure indicates that clipping

gradient properly to reduce direction deviation within the conver-

gence boundary can avoid crash. The right subfigure points out

that controlling learning rate (step size) could promise a stable pa-

rameter updating by counteracting negative effect of deviation.

1. Introduction

Deep convolutional neural networks (DCNNs) have

achieved remarkable success in many fields, such as com-

puter vision, natural language processing, etc. However,

training and deploying DCNNs usually require a large

amount of time cost and power consumption, which is

greatly challenging the extensive applications in industry.

As a result, many recent studies have been focusing on how

to accelerate the inference of neural networks by fixed-point

quantization on weights or activations [6, 3, 24, 29, 27, 64,

42, 52, 63, 54, 21, 44, 57], and design dedicated hardware

utilizing the efficient integer arithmetic [17, 5, 26, 23]. The

successful progress surprisingly shows that the bit-width

can be reduced to extremely low such as 4-bit while bring-

ing quite little hurt to the accuracy for inference [15, 59, 13].

Besides inference, low-bit training can also promise con-

siderable acceleration, which further quantizes gradients

and utilizes low-bit efficient compute kernel for both the

forward and backward propagation. As analyzed in [25], the
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computation of backward propagation occupies more time

than that of forward propagation. So accelerating the train-

ing utilizing low-bit quantization has greater potential when

considering the backward process. There has existed 16-bit

floating-point (FP16) training, which proves the feasibility

of low-bit training [41, 9, 33]. But it is restricted to lim-

ited advanced GPUs based on Turing or Volta architecture.

Compared with FP16, the 8-bit integer (INT8) operation is

widely supported by general GPUs based on Turing, Volta

and even low-end Pascal architectures. Besides, the 8-bit

integer arithmetic is theoretically and practically 2× faster

than FP16 and 4× faster than FP32. Therefore, INT8 train-

ing enjoys better efficiency, lower power consumption and

better versatility on off-the-shelf hardware.

Despite the attractive benefits, when quantizing gradi-

ents to 8-bit, the normal training tends to become unsta-

ble, since the distortion of gradients easily misleads the di-

rection of training and causes crash of optimization. This

definitely makes INT8 training very difficult, especially for

the deep networks. Currently only a few studies have at-

tempted to solve this problem [64, 56, 60, 2, 53, 48]. Unfor-

tunately, all of them just tested limited quantization-friendly

networks with high redundancy, and usually require com-

plex structure adjustment or introduce additional operation

to reduce quantization error, while significantly increasing

the computational complexity. Besides, most of these works

lack the theoretical analysis on the ad-hoc tricks, and even

worse, none of them reports the practical speedup in the

real-world case. All these reasons make the existing INT8

training methods stay far away from the practicality without

the universal design.

To build a robust and unified INT8 training framework,

we conduct deeper explorations in the challenges of gradi-

ent quantization. We empirically find that the distribution of

gradients owns four special characteristics: sharp and wide,

evolutionary, depth-specific and structure-specific. These

unique characteristics make gradient quantization quite dif-

ferent from the naive quantization on weights or activations,

and INT8 training more difficult to be stabilized. It is im-

portant to understand the behaviors and effects of quantized

gradient in the convergence of the training. Therefore, we

theoretically establish the convergence bound with respect

to the gradient quantization error and the learning rate.

Based on the special characteristics and the theoretical

analysis, we propose two universal techniques: Direction

Sensitive Gradient Clipping and Deviation Counteractive

Learning Rate Scaling to stabilize the INT8 training. The

Direction Sensitive Gradient Clipping minimizes the direc-

tion deviation by pursuing an appropriate clipping as the

training process evolves. Sometimes even if the clipping

helps reduce the quantization error, it may still suffer from

the accumulated gradient deviations across deep layers. To

eliminate this effect, the Deviation Counteractive Learning

Rate Scaling is further devised to promise stable parameter

updating. The fundamental idea of our method is shown in

Figure 1. Extensive experiments on a variety of network

structures and tasks prove the superiority and versatility of

our method.

Our contribution can be summarized as below:

• We observe four special characteristics on the gradi-

ent distribution: sharp and wide, evolutionary, depth-

specific and structure-specific, which cause the larger

quantization error of gradients.

• We theoretically provide the convergence bound of

INT8 training, and respectively devise two universal

techniques that can stabilize the INT8 training.

• We are the first to achieve stable INT8 training of var-

ious networks such as MobileNetV2/InceptionV3 and

various tasks such as object detection, with compara-

ble accuracy to full-precision training.

• We build a flexible and unified INT8 training frame-

work for various tasks using various networks, which

can easily replace the original full-precision training.

• We are the first to complete practical acceleration of

INT8 training on low-end GPUs with Pascal architec-

ture, i.e., NVIDIA GeForce GTX 1080Ti, achieving

about 22% speedup without too much optimization.

2. Related Work

Compared to huge amount of studies on accelerating

inference by model quantization [45, 62, 7, 52, 11, 40],

there are few works exploring quantized training including

backward propagation comprehensively. DoReFa-Net [64]

quantizes gradients to 4 and 6 bits, but only experiments

AlexNet with low precision gradient. WAGE [56] and

WAGEUBN [60] quantize gradient to 8-bit integer, but they

both incur considerable loss of accuracy (greater than 5%).

RangeBN [2] and FP8 training [53] achieve accuracy com-

parable to full-precision models, but they both use floating-

point number in gradients, which is not beneficial for hard-

ware optimization to boost the speed. Besides quantized

training, most low-precision training research keeps gra-

dient precision in 16-bit floating-point. Flexpoint [33],

MPT [41] and DFP [9] all use 16-bit floating-point to train

DNNs with accuracy comparable to full-precision model.

To perform more efficient training of neural networks, INT8

training has more advantages over FP16 training.

3. Unified INT8 Training

In this paper, we aim to build a unified INT8 training

framework, which utilizes 8-bit integer arithmetic to accel-

erate the expensive training process of deep neural networks

including both the forward and backward propagation.
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Figure 2. Crashed training of MobileNetV2 on CIFAR-10 after

quantizing gradients to 8-bit.

3.1. Preliminaries

Symmetric uniform quantization[30] is the most effi-

cient scheme among existed quantization methods, due to

its hardware-friendly computation. Therefore, to guarantee

the acceleration performance, we build the INT8 training

framework based on it. Given the data x (i.e., weights, ac-

tivations, and gradients) following in the range (l, u) and a

clipping value c ∈ (0,max(|l|, |u|)], the symmetric uniform

quantization can be formulated as:

q = round(
clip(x, c)

s
), (1)

where clip(x, c) = min(max(x,−c), c), s = c
28−1−1 in-

dicates the scaling factor to project the floating-point num-

ber to fixed-point 8-bit integer, and q represents the quan-

tized fixed-point number. Subsequently, the corresponding

dequantized data x̂ can be calculated by:

x̂ = q · s. (2)

Different from most prior studies that mainly focus on

speeding up the inference (i.e., the forward propagation),

our INT8 training framework attempts to further accelerate

the backward propagation during the training stage, by ap-

plying quantization to the gradients. Namely, we pursue the

quantize-dequantized gradients ĝ from full-precision gradi-

ents g in a proper way.

To ensure the quantized gradients maintain an unbiased

expectation compared with the original ones, we adopt the

stochastic rounding following [16]:

rounds(x) =

{

⌊x⌋, w.p. 1− (x− ⌊x⌋)

⌊x⌋+ 1, w.p. x− ⌊x⌋
. (3)

Unfortunately, although the stochastic rounding tech-

nique limits the quantization error to some extent from the

statistical view, the perturbation for each training iteration is

still inevitable and harmful for convergence, whose reasons

will be discussed in the following section.

−1.2 0.0 1.2 ×10
−1

0.28

0.55 layers.16.conv3.W

−4.9 0.0 4.9

layers.16.conv3.A

−5.0 0.0 5.0 ×10
−4

layers.16.conv3.G

(a) gradients are different from weights and activations

−1.8 0.0 1.8 ×10−4

0.45

0.90 layers.16.conv3.G

−5.0 0.0 5.0 ×10−4

layers.16.conv3.G

−1.0 0.0 1.0 ×
10−4

layers.16.conv3.G
Epoch 0 Epoch 30 Epoch 300

(b) gradients keep evolving during training

−1.1 0.0 1.1 ×10
−2

0.12

0.25 layers.0.conv3.G

−4.0 0.0 4.0 ×
10

−4

layers.12.conv3.G

−1.8 0.0 1.8 ×10
−4

layers.16.conv3.G

(c) gradients of different depths have have different patterns

−1.1 0.0 1.1×
10

−4

0.33

0.66 layers.16.conv1.G

−9.3 0.0 9.3 ×10
−3

layers.16.conv2.G

−1.8 0.0 1.8 ×10
−4

layers.16.conv3.G

(d) gradients of different structures have different patterns

Figure 3. Distributions of activations, weights and gradients with

respect to different layers of MobileNetV2 and training iterations.

3.2. Challenges of Gradient Quantization

Gradients determine the direction of optimization and

the magnitude of parameter update and thus play a criti-

cal role in pursuing high accurate models. In INT8 training,

after we apply quantization to gradients, the perturbation in-

troduces deviation to the optimization direction. Once the

deviation accumulates to an unacceptable degree, the train-

ing process may be unstable and even crash, resulting in

severe performance degradation. Figure 2 shows our empir-

ical observation that for some special network architectures

like MobileNetV2, directly quantizing gradients causes a

rapid crash of training.

To further investigate the essential reasons behind this

phenomenon, we conduct detailed analysis on the distribu-

tion of gradients during training without gradient quantiza-

tion, as shown in Figure 3. We surprisingly observe that the

gradients own the following unique characteristics:

C1: Sharp and Wide. As shown in Figure 3(a), compared

to weights and activations, gradients follow an unusual

distribution that has more values concentrated around

zero while a certain number of extreme values also ex-
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ists. Therefore, the distribution curve is very sharp

with small values taking the majority of gradients, but

the range is relatively very wide. This makes many

gradients quantized to zero and the quantization error

significantly large when using uniform quantization.

C2: Evolutionary. Figure 3(b) depicts how the gradient

distribution of the same layer evolves with respect to

the training iterations. We can find that as the train-

ing goes on, the shape of gradient distribution becomes

much sharper and narrower, which means it is impossi-

ble to fix the quantization settings throughout the train-

ing process, as we usually do for weights and activa-

tions, such as assuming the same clipping range in the

whole training.

C3: Depth-Specific. Figure 3(c) compares the distribution

of gradients in different layers at the same epoch. It is

obvious that the distributions at the shallow layers are

sharper with larger extreme values than the deeper lay-

ers. This means that the preceding layers of the neural

networks often face more severe quantization loss.

C4: Structure-Specific. As can be seen in Figure 3(d),

the gradients of layers with different structures at the

same epoch present apparently different patterns. For

MobileNetV2, the second convolutional layer in each

block is of depth-wise structure. Its gradients own

larger range and sharper shape even in the deeper

block, making MobileNetV2 harder to quantize from

the aspect of gradients.

Based on the above observations, we can conclude that

the gradients differ from weights and activations largely,

which inevitably causes an unstable training, when simply

adopting the common quantization techniques for weights

and activations. This means that we need certain tech-

niques to take care of distinctiveness in gradient quantiza-

tion, which brings great challenges to the real and unified

INT8 training in practice.

Before turning to devise the desired techniques consider-

ing the speciality of gradients, we first attempt to understand

the gradient’s effect on the training stability, by theoretically

revealing the connections between training convergence and

gradient quantization. This will provide us a reliable clue to

build the robust and unified INT8 training framework.

3.3. Stabilize Training: A Theoretical Perspective

As commonly used in the analysis of deep learning opti-

mizers [12, 28, 46, 39], the ability of convergence is usually

evaluated by the regret R(T ).

R(T ) =

T∑

t=1

(ft(wt)− ft(w
∗)), (4)

where T indicates the number of iterations. wt ∈ S is the

parameter at time t in the convex compact set S, and ft(wt)
denotes the corresponding loss function. The optimal pa-

rameter is represented by w∗. If the average regret
R(T )
T

approaches zero quickly as T increases, the speed and abil-

ity of convergence can be guaranteed.

Due to the complexity of the DCNNs, it is very difficult

to directly analyze its behaviors. As the prior studies [1, 34,

22, 61] do, we first make the following assumptions:

Assumption 1. ft is convex;

Assumption 2. ∀wi,wj ∈ S, ‖wi −wj‖∞ ≤ D∞.

Although the convexity assumption may not hold for

deep networks, analysis based on this can provide reason-

able and valuable insights for us, which has been proved in

previous studies [12, 39, 22, 61].

Taking the standard stochastic gradient descent algo-

rithm into consideration, the optimization based on quan-

tized gradient ĝt and learning rate ηt can be formulated as:

wt+1 = wt − ηtĝt. (5)

Then we have the following theoretical finding (see the sup-

plementary materials for detailed proof):

Theorem 1. If define the error of quantized gradients as

ǫt = gt − ĝt and the dimension of weights as d, then with

assumption 1 and 2, we have:

R(T )

T
≤

dD2
∞

2TηT
︸ ︷︷ ︸

(1)

+
D∞

T

T∑

t=1

‖ǫt‖

︸ ︷︷ ︸

(2)

+
1

T

T∑

t=1

ηt

2
‖ĝt‖

2

︸ ︷︷ ︸

(3)

. (6)

We can find that the bound of average regret is dominated

by three terms. Term (1) approaches zero as T increases

and thus can be ignored in gradient quantization. Term (2)

indicates the quantization error of gradients greatly affects

the ability to converge, and it is usually large, as analyzed

in Section 3.2. For term (3), its magnitude is mainly influ-

enced by the learning rate and l2-norm of quantized gradi-

ents. Based on the theoretical analysis, to stabilize INT8

training, we have two basic principles for designing better

quantization techniques: (1) reduce the quantization error

of gradients; (2) scale down the learning rate. They are also

very intuitive since, on the one hand, a lower quantization

error means small deviation of optimization direction and

thus avoids the training crash, on the other hand, it is a

common sense that decreasing the learning rate gradually

promises a better solution in the optimization.

Now with the design principles, the question is how to

devise the universal techniques for INT8 training, mean-

while take the characteristics of gradients into considera-

tion. We respectively present two novel techniques: Direc-
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Table 1. KS-statistics of gradient and weight with respect to dif-

ferent layers’ conv3 in MobiletNetV2, the last column indicates

the maximum value that can accept the hypothesis at significance

level of 0.05.

Data
Distribution

Critical value
Gaussian Laplace Student

layer0
g 0.1934 0.0790 0.2005 0.0012

w 0.0391 0.0721 0.1011 0.0765

layer8
g 0.2061 0.1091 0.2303 0.0024

w 0.0294 0.0569 0.1084 0.0110

tion Sensitive Gradient Clipping and Deviation Counterac-

tive Learning Rate Scaling, which together lower the aver-

age regret bound and guarantee stable INT8 training.

3.4. Direction Sensitive Gradient Clipping

Considering the basic operation z = W⊤a in deep neu-

ral networks, the gradients of weights gW actually can be

calculated by gz
⊤a. From this aspect, the quantization error

of gW in (6) mainly stems from that of activation gradients

gz. Therefore, in our INT8 training we can mainly concern

the quantization of gz, which will help control the error of

quantized gradients in (6). For simplicity of notations, in

the following discussion we directly use g to denote gz.

To minimize quantization error, previous works mainly

seek the optimal clipping value c in (1) by assuming cer-

tain data distribution, e.g. Gaussian distribution [3, 4, 20,

2, 22, 11, 55, 58]. However, according to the gradient

characteristics C1 and C2 we discover, it is unpractical to

make a common assumption for an evolutionary and un-

usual gradient distribution. To further prove this point, we

do the Kolmogorov–Smirnov test[50] with distribution pa-

rameter solved by maximum likelihood estimation, and re-

port the KS-statistics that consistently reject the assumption

that gradients obey any common distribution in Table 1.

To find the optimal clipping value c without any assump-

tion, a straightforward idea is to keep the quantized gra-

dient consistent with the original one by gradient descent

algorithm. Usually, one can model the consistency using

the popular mean-square error (MSE). Unfortunately, due

to characteristics C2 and C3 of gradients with huge discrep-

ancy and fluctuation in their magnitudes, MSE makes the

optimization vulnerable and unable to work under the same

simple setting across various layers.

Therefore, to pursue the desired clipping values of dif-

ferent layers that promise stable training, we choose cosine

distance to guide the learning of clipping values, which not

only avoids the negative effect of the varied gradients’ mag-

nitudes, but also keeps the network optimization directions

consistent:

dc = 1− cos(< g, ĝ >) = 1−
g · ĝ

|g| · |ĝ|
(7)

where g and ĝ denote the original floating-point gradient

and its quantize-dequantized counterpart.
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Figure 4. The effect of clipping and learning rates on INT8 train-

ing. γ in (a) represents optimal clipping value. In (b), η1 sets ini-

tial learning rate as 0.1 with φ(dc) scaling, η2, η3 and η4 choose

0.01, 0.05, 0.1 as initial learning rate respectively without scale.

The cosine distance measures the direction deviation of

quantized gradients, and the strong correlation between co-

sine distance and training stability will be verified in the

supplementary materials. By minimizing the cosine dis-

tance, we subsequently reduce term (2) in (6). Figure 4(a)

shows the quantization error using different clipping values,

where there exists an optimal clipping value that substan-

tially reduces the cosine distance.

3.5. Deviation Counteractive Learning Rate Scaling

The theoretical analysis on convergence ability of quan-

tized training indicates the necessity of scaling down learn-

ing rate, since the quantization error of gradients cannot

vanish completely. To validate this point, we decrease

the learning rate of the original crashed training of Mo-

bileNetV2 mentioned in Section 3.2 and find that it defers

and even eliminates the crash with an extremely low learn-

ing rate, although facing a performance degradation (see the

red, green and orange lines in Figure 4(b)).

Since the gradients are backward propagated layer by

layer, the minor gradient deviation will accumulate expo-

nentially after massive multiplication and addition calcula-

tion. To address this issue, we further propose the Deviation

Counteractive Learning Rate Scaling to balance out the er-

ror by exponentially decaying the learning rate according to

the degree of direction deviation dc, the scaling function is

formulated at:

φ(dc) = max(e−αdc , β) (8)

where α controls the decay degree and β limits the lower

bound of scaling.

This scaling function generates a factor to scale down the

original full-precision learning rate. We empirically find

that the self-adapting scaling function performs well in a

layer-wise way, adaptively adjusting the learning rate ac-

cording to the direction deviations in different layers. This

counteracts the undesired effects of the gradient deviations

across layers, and exactly addresses the challenges of the
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Figure 5. Flexible INT8 convolutional layer replacement.

Table 2. Overhead reduced with Periodic Update (on ResNet-50).

Period 1 10 100 1000

Average time(s/iter) 1.006 0.364 0.301 0.297

depth-specific and structure-specific patterns as observed in

characteristics C3 and C4 in Section 3.2. The blue line in

Figure 4(b) demonstrates that the training equipped with

φ(dc) scaling achieves higher accuracy than the manually

adjusted ones (tested with MobileNetV2 on CIFAR-10).

3.6. General Purpose Training Framework

In addition to ensuring the stable and accurate conver-

gence, in practice our unified INT8 training framework

should also satisfy the following three features:

(1) Easy to plug into any DCNN architecture. To re-

alize this, we implement an automatic match and replace-

ment mechanism in PyTorch [43] that correspondingly sub-

stitutes convolutional and fully-connected layers with 8-bit

counterpart. The whole workflow including both forward

and backward passes is shown in Figure 5.

(2) No excessive extra computational overhead. To avoid

the extra time cost of calculating clipping value, we design

a Periodic Update method to optimize the clipping value

periodically. As we can see in Table 2, the Periodic Update

method dramatically reduces the computational overhead of

optimizing the clipping value.

(3) Easy to implement on off-the-shelf hardware. To val-

idate the potential of that, we utilizes the DP4A instruc-

tion (8-bit integer 4-element vector dot product) on low-end

NVIDIA Pascal GPUs to implement efficient 8-bit kernels

for calculating gradients. To the best of our knowledge,

we are the first to achieve practical acceleration of INT8

training including the backward propagation. The detailed

speedup will be reported and discussed in Section 4.4.

For feature F3, the practical acceleration of INT8 train-
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Figure 6. Analysis of cosine distance and learning rate scaling

function.

ing relies on whether the hardware supports 8-bit efficient

instruction. Since the 8-bit fixed-point operation has been

widely used for inference, most existed hardware have the

ability to speed up the training including backward propaga-

tion such as Ascend310 from Huawei [23], MLU100 from

Cambricon [5], TPU from Google [26] and almost all GPUs

from NVIDIA [18]. To validate the potential of accelerating

the backward propagation, we utilizes the DP4A instruction

on low-end GPUs with Pascal architecture to implement ef-

ficient 8-bit kernels for calculating gradients.

4. Experiments

We conduct extensive experiments to demonstrate that

our proposed framework is unified for various network

structures on popular image classification and object detec-

tion tasks with state-of-the-art accuracy, and meanwhile it

can be easily deployed on the mainstream devices (NVIDIA

Pascal GPU) with satisfactory speedup, compared to full-

precision training.

4.1. Ablation Study

Settings. We first conduct the ablation study on CIFAR-10

dataset with MobileNetV2 [49], to validate the effectiveness

of the proposed techniques. We use cosine scheduler [1]

with initial learning rate set to 0.1 for all experiments. In

the Periodic Update experiment, the α and β in learning

rate scaling are set to 20 and 0.1 respectively.

Direction Sensitive Gradient Clipping. Figure 6(a) shows

the cosine distance with respect to the training steps. We

can observe that conv2 (the second convolutional layer) of

each block owns a much larger cosine distance than other

layers most of the time. This is consistent with C4 that the

gradients of conv2 own sharper shape, indicating that cosine

distance can well reflect the gradient characteristics.

Moreover, as Table 3 lists, our proposed direction sensi-

tive gradient clipping technique indeed prevents INT8 train-

ing from crashing, which proves the fact that optimizing a

clipping value of gradients to minimize direction deviation

dc can certainly ensure a stable INT8 training.

Deviation Counteractive Learning Rate Scaling. We
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Table 3. Ablation study on clipping method for INT8 training.

Clipping method No clipping
Direction Sensitive

Gradient Clipping

Accuracy (%) NaN 93.02

evaluate three forms of learning rate scaling strategies with-

out clipping to control variable for a reasonable compari-

son. The results shown in Figure 6(b) reveal that linear and

quadratic forms are too weak to control optimization direc-

tion within the convergence boundary and model crashes in

the training process. Compared with linear and quadratic

form, the scaling with exponential form is more powerful to

counteract the direction deviation and prevents optimization

from stepping out of the convergence boundary. We further

explore its sensitivity to the selection of hyperparameter in

Table 4, and we can see that different settings of α and β

achieve similar accuracy, which presents the stability of our

Deviation Counteractive Learning Rate Scaling.

Table 4. Comparison of different hyperparameters for learning rate

scaling.

α 10 10 20 20

β 0.1 0.2 0.1 0.2

Accuracy (%) 92.82 93.28 93.38 93.27

Periodic Update for clipping value. To reduce the extra

computational overhead, we increase the period to update

clipping value and find that it brings little hurt to the accu-

racy, as shown in Table 5. This empirical conclusion brings

possibilities for the practical acceleration of INT8 training.

Besides, here we apply both gradient clipping and learning

rate scaling, and obtain better performance (see that with

period 1) than those in Table 3 and 4. This further verifies

the positive effects of the two general techniques.

Table 5. Ablation study on update period.

Period 1 10 100 1000

Accuracy (%) 93.66 93.07 93.38 92.75

4.2. Image Classification

Now we consider the popular image classification task

that most prior studies choose to evaluate the quantization

performance. We experiment with AlexNet [32], ResNet

[19], MobileNetV2 [49] and InceptionV3 [51] on CIFAR-

10 [31] and ImageNet (ILSVRC2012) [10]. The CIFAR-10

dataset contains a training set of 50K images and a testing

set of 10k images. Each image is of size 32×32 with 10

classes. ImageNet (ILSVRC2012) consists of 1.2 million

training images and 50K test images with 1000 classes.

Settings. As for the hyperparameters of ResNet, we use the

same settings described in [19]. For other neural networks,

we use cosine scheduler [1] with initial learning rate set to

0.1. The α and β in learning rate scaling are set to 20 and 0.1

respectively. Clipping value is updated per 100 iterations

for all experiments.

CIFAR-10. As Table 6 shows, our method achieves com-

parable accuracy on ResNet-20 to FP8 training, but takes

much less memory and computation consumption due to the

fixed-point operation. Moreover, our method performs sur-

prisingly good on MobileNetV2 (1.01% accuracy drop) and

InceptionV3 (even better than full precision model).

ImageNet. Table 7 lists existing state-of-the-art quantized

training methods including WAGE [56], WAGEUBN [60]

and FP8 training [53]. For AlexNet INT8 training, our

method obtains 5.84% improvement over DoReFa-Net [64].

Free from the extra overhead like tanh, our method enjoys

higher efficiency than DoReFa-Net. As for the 2-bit weight

and 8-bit activation/gradient case, we significantly outper-

form WAGE with about 3% accuracy gain. What’s more,

equipped with our method, the INT8 training for ResNet

architecture achieves almost no performance degradation,

while none of the previous studies has done that. Compared

with the FP8 training method, our method improves the ac-

curacy by nearly 3%. It should be noted that we can di-

rectly get a real speedup on popular off-the-shelf devices

while methods like FP8 training need specially designed

hardware, which means that our framework is more general

for unified training acceleration.

As analyzed in [36], the convolutional layer occupies

most of the training time while other layers like BatchNorm

and ReLU are not computation-intensive. Therefore, we

mainly focus on quantizing convolutional layers currently

and do not quantize BatchNorm layer like RangeBN [2]

and WAGEUBN [60]. Even so, there is still a significant

speedup for INT8 training. In addition, we could get com-

parable accuracy to full precision training, much higher than

RangeBN and WAGEUBN.

Networks using INT8 training for the first time. To our

best knowledge, we are the first to quantize gradient of

MobileNetV2, which is known to be difficult in this com-

munity. Our method gets very good performance on both

CIFAR-10 and ImageNet datasets using MobileNetV2, with

only around 1% accuracy loss. We also try INT8 training on

InceptionV3 for the first time, and achieve comparable ac-

curacy to full precision model. Note that for InveptionV3

on CIFAR-10, our INT8 training method can even achieve

better performance than the full-precision model.

4.3. Object Detection

To prove the versatility of our method, we further con-

duct experiments with the popular object detection net-

works including Faster-RCNN [47], RFCN [8] and Reti-

naNet [37] on two widely used datasets: PASCAL VOC

[14] and COCO [38]. The PASCAL VOC dataset consists

of 11k images with 20 classes. The COCO dataset contains

more than 20k images and 80 object categories. Note that
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Table 6. Results on CIFAR-10 dataset.

Model Method
Bit-width

(W/A/G)

Accuracy

(%)

ResNet-20

FP 32/32/32 92.32

FP8 training [53] 8/8/8 92.21

Ours 8/8/8 91.95

MobileNetV2
FP 32/32/32 94.39

Ours 8/8/8 93.38

InceptionV3
FP 32/32/32 94.89

Ours 8/8/8 95.00

Table 7. Results on ImageNet dataset.

Model Method
Bit-width

(W/A/G)

Accuracy

(%)

AlexNet

FP 32/32/32 59.84

DoReFa-Net [64] 8/8/8 53.00

Ours 8/8/8 58.84

WAGE [56] 2/8/8 48.40

Ours 2/8/8 51.28

ResNet-18

FP 32/32/32 70.30

WAGEUBN [60] 8/8/8 66.92

FP8 training [53] 8/8/8 67.34

Ours 8/8/8 69.67

ResNet-34

FP 32/32/32 73.68

WAGEUBN [60] 8/8/8 68.50

Ours 8/8/8 73.29

ResNet-50

FP 32/32/32 76.60

WAGEUBN [60] 8/8/8 69.07

Ours 8/8/8 76.34

MobileNetV2
FP 32/32/32 72.39

Ours 8/8/8 71.20

InceptionV3
FP 32/32/32 77.28

Ours 8/8/8 76.59

we are the first to successfully achieve INT8 training on the

object detection task.

Settings. As for the hyperparameters, we follow the same

rules described in [35]. And α and β for learning rate scal-

ing are the same as those used in image classification task.

PASCAL VOC. We test RFCN and Faster R-CNN with dif-

ferent backbones, and find that quantized training equipped

with our method only suffers a very slight detection accu-

racy (mAP) drop. The result of RFCN shows that even for

a deeper backbone such as ResNet-101, our INT8 training

still maintains almost the same accuracy as full-precision.

COCO. On the large scale COCO dataset, we experiment

with RetinaNet (one-stage) and Faster R-CNN (two-stage).

Our method performs stably with less than 1.8% accuracy

degradation on both networks. We find that RetinaNet in-

curs higher mAP loss than Faster R-CNN, which is incon-

sistent with the conclusions in the previous study [35]. This

may be caused by the fact that the focal loss used in one

stage detector is more sensitive to gradient quantization.

Table 8. Results on PASCAL VOC Dataset.

Model Backbone Method
Bit-width

(W/A/G)
mAP (%)

Faster

R-CNN

ResNet-50 FP 32/32/32 82.0

ResNet-50 Ours 8/8/8 81.9

RFCN
ResNet-101 FP 32/32/32 80.8

ResNet-101 Ours 8/8/8 79.1

Table 9. Results on COCO Dataset.

Model Backbone Method
Bit-width

(W/A/G)
mAP (%)

Faster

R-CNN

ResNet-50 FP 32/32/32 36.2

ResNet-50 Ours 8/8/8 34.95

RetinaNet
ResNet-50 FP 32/32/32 36.9

ResNet-50 Ours 8/8/8 35.1

Table 10. End-to-end average time for a round of INT8 training.

(tested with ResNet-50 on GeForce GTX1080TI, batch size 64.)

Precision Forward (s) Backward (s) Iteration (s)

FP32 (cuDNN) 0.117 0.221 0.360

INT8 (ours) 0.101 0.171 0.293

4.4. Speed Result on NVIDIA GPU

None of the existing libraries can directly support the

complete INT8 training. Thus we implement it by ourselves

on NVIDIA Pascal GPU using DP4A instruction to verify

the acceleration power of our method. Table 10 shows that

in the forward process using our solution, INT8 can bring

an average 1.63× speedup, while in the backward process,

it can achieve a higher 1.94× speedup. Even if we only

replace the FP32 convolutional layer with the slightly op-

timized INT8 one, the training time for ResNet-50 can be

reduced by about 22%. More details about speed result are

included in the supplementary materials.

5. Conclusions

In this paper, we attempt to build an INT8 training frame-

work for common DCNNs. We found four distinctive char-

acteristics of gradients and then gave two theoretical princi-

ples stabilizing training with the convergence bound. Based

on that, we proposed Direction Sensitive Gradient Clipping

and Deviation Counteractive Learning Rate Scaling. Ex-

tensive experiments prove the versatility of our method for

various networks and tasks. We reduced the training time

by 22% on Pascal GPU with only trivial optimization. If

each layer is sufficiently optimized, the training will achieve

higher speedup and lower memory consumption. We hope

our first successful attempt can help lead the community to-

wards a fully unified INT8 training.
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