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Introduction
Background: Hardware-friendly network quantization (e.g., binary/uniform quantization) can efficiently accelerate the inference and meanwhile reduce
memory consumption of the deep neural networks. But it faces unstable training problem and severe performance degradation. Given the bit width b and the
floating-point activation/weight x following in the range (l, u), two existing hardware-friendly quantization functions can be formulated as:

Binary Quantization: QB(x) = sgn(x) =

{
+1, if x ≥ 0,

−1, otherwise.
(1) Uniform Quantization: QU (x) = round(

x

∆
)∆, ∆ =

u− l
2b − 1

, (2)

Key Contributions: We propose Differentiable Soft Quantization (DSQ) to well approximate the standard binary and uniform quantization process, which
owns the following advantages:
• Novel quantization. The proposed DSQ function can well approximate the standard binary and uniform quantization in an evolution way.
• Easy convergence. The rectification with DSQ helps the backward propagation becomes more consistent with the forward pass.
• Balanced loss. DSQ jointly determines the clipping range and approximation of the quantization, and thus balances the quantization loss including

clipping error and rounding error.
• High efficiency. DSQ can be implemented based on our fast computation kernels, and its inference speed surpasses most open-source high performance

inference frameworks.
• Strong flexibility. DSQ is compatible with the binary or uniform quantization methods, easy to deploy in state-of-the-art network structures and able to

get further accuracy improvement.

Framework
Overview: During training, we apply piecewise DSQ to redistribute the data and make it automatically evolve in each epoch to behave more like uniform
quantization. After training, the piecewise DSQ can completely convert to the hard uniform quantization by sign operation, ensuring an easy and efficient
deployment on resource limited devices.
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Formulation: Given the bit width b and the floating-point activation/weight x
following in the range (l, u), the original range (l, u) is divided into 2b − 1
intervals Pi, i ∈ (0, 1, . . . , 2b − 1), and ∆ = u−l

2b−1
is the interval length. The

DSQ function handles the point x falling in different intervals Pi:

mi = l + (i+ 0.5)∆ and s =
1

tanh(0.5k∆)
. (3)

ϕ(x) = s tanh (k(x−mi)) , if x ∈ Pi, (4)

QS(x) =


l, x < l,

u, x > u,

l + ∆
(
i+ ϕ(x)+1

2

)
, x ∈ Pi

(5)

where the coefficient k determines the shape of DSQ. The larger k is, the more
the asymptotic function behaves like the standard quantization function.
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(a) Piecewise DSQ
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Figure 1: Curves of differentiable soft quantization function for
(a)uniform quantization, (b) binary quantization, a special case of (a)

Auto Evolution
Definition of α:

α = 1− tanh(0.5k∆) = 1− 1

s
. (6)

Evolution of α:

min
α
L(α;x, y) s.t. ||α||2 < λ (7)

∂y

∂α
=


0, x < l,

0, x > u,
∂QS(x)
∂α , x ∈ Pi

(8)

α→ 0, DSQ→ standard quantization.
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(a) Characteristic of α
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Figure 2: The characteristic variable α in DSQ.

Optimization of clipping value:

∂y

∂l
=


1, x < l,

0, x > u,

1 + q ∂∆
∂l + ∆

2
∂ϕ(x)
∂l , x ∈ Pi

(9)

∂y

∂u
=


0, x < l,

1, x > u,

q ∂∆
∂u + ∆

2
∂ϕ(x)
∂u , x ∈ Pi

(10)

where
q = i+

1

2
(ϕ(x) + 1). (11)

Efficient Low-bit Implementation
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Figure 3: Data flow in our fast 2-bit ARM GEMM implementation.

Table 1: Ratio of time for calling MLA (8-bit register) and SADDW
(16-bit register) with respect to different number of quantized bits.

b 2 3 4
MLA/SADDW 31/1 7/1 1/1

Table 2: Comparison of time cost of ResNet-18 on Raspberry Pi 3B
using different inference frameworks with different bits (single thread).

DSQ 2-bit NCNN 8-bit [6]
time (ms) 551.22 935.51

* NCNN was tested with commit d263cd5 on 2019.3.15.

Analysis of DSQ
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Figure 4: Rectification: Data distribution before and after DSQ (2-bit).
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Figure 5: Training quantized model with/without DSQ.
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Figure 6: Automatic evolution of α during training.

Experiments

Table 3: Ablation study on 2-bit uniform quantization.
Method Top-1 (%) Top-5 (%)

Standard Quantization 86.63 99.35
Fixed α 86.95 99.50
Learnt α 87.25 99.49

Learnt α, l, u 88.44 99.50

Table 4: Comparison of 1-bit quantized models on CIFAR-10.

Model Method
Bit-Width

(W/A) Accuracy (%)

VGG-Small

FP 32/32 91.65
BNN [3] 1/1 89.90

XNOR [7] 1/1 89.80
Ours 1/1 91.72

ResNet-20

FP 32/32 90.78
DoReFa [11] 1/1 79.30

Ours 1/1 84.11
DoReFa [11] 1/32 90.00
LQ-Net [10] 1/32 90.10

Ours 1/32 90.24

Table 5: Comparison of different quantized models on ImageNet.

Model Method
Bit-Width

(W/A) Accuracy (%)

ResNet-18

FP 32/32 69.90
BWN [7] 1/32 60.80

HWGQ [1] 1/32 61.30
TWN [4] 2/32 61.80

Ours 1/32 63.71
PACT [2] 2/2 64.40

LQ-Net [10] 2/2 64.90
Ours 2/2 65.17

ABC-Net [5] 3/3 61.00
PACT [2] 3/3 68.10

LQ-Net [10] 3/3 68.20
Ours 3/3 68.66

BCGD [9] 4/4 67.36†

Ours 4/4 69.56†

ResNet-34

FP 32/32 73.80
LQ-Net [10] 2/2 69.80

Ours 2/2 70.02
ABC-Net [5] 3/3 66.70
LQ-Net [10] 3/3 71.90

Ours 3/3 72.54
BCGD [9] 4/4 70.81†

Ours 4/4 72.76†

Mobile-
NetV2

FP 32/32 71.87
PACT [2, 8] 4/4 61.40

Ours 4/4 64.80
* The † represents the results of full quantization for activations and weights
across all convolution layers.
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