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Abstract

Hardware-friendly network quantization (e.g., bi-

nary/uniform quantization) can efficiently accelerate the in-

ference and meanwhile reduce memory consumption of the

deep neural networks, which is crucial for model deploy-

ment on resource-limited devices like mobile phones. How-

ever, due to the discreteness of low-bit quantization, existing

quantization methods often face the unstable training pro-

cess and severe performance degradation. To address this

problem, in this paper we propose Differentiable Soft Quan-

tization (DSQ) to bridge the gap between the full-precision

and low-bit networks. DSQ can automatically evolve dur-

ing training to gradually approximate the standard quanti-

zation. Owing to its differentiable property, DSQ can help

pursue the accurate gradients in backward propagation,

and reduce the quantization loss in forward process with

an appropriate clipping range. Extensive experiments over

several popular network structures show that training low-

bit neural networks with DSQ can consistently outperform

state-of-the-art quantization methods. Besides, our first ef-

ficient implementation for deploying 2 to 4-bit DSQ on de-

vices with ARM architecture achieves up to 1.7× speed up,

compared with the open-source 8-bit high-performance in-

ference framework NCNN [31].

1. Introduction

Deep convolution neural networks have achieved great

success in many fields, such as computer vision, natural

language processing, information retrieval, etc. However,

the expensive memory and computation costs seriously im-

pede their deployment on the widespread resource-limited

devices, especially for real-time applications. To address
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this problem, the quantization technique has emerged as

a promising network compression solution and achieved

substantial progress in recent years. It can largely reduce

the network storage and meanwhile accelerate the infer-

ence speed using different types of quantizers, mainly in-

cluding binary/ternary [8, 9, 16, 23, 45, 25, 33], uniform

[46, 28, 6, 26, 43, 18, 36, 42, 20, 7, 2, 39, 21] and non-

uniform [44, 35, 13, 5, 41, 30, 38, 37, 3].

Limited by the specific hardware features like the in-

struction sets, most quantization methods can hardly ac-

complish the goal of network acceleration and may still

heavily depend on the special hardware design and long-

term hardware development. For example, a special infer-

ence engine EIE [12] has been developed to speed up the

method in [13]. Fortunately, the recent studies have proved

that both the binary and uniform quantization models en-

joy the hardware-friendly property [18, 17, 11, 27], which

enables us to accelerate the inference directly on off-the-

shelf hardware with the efficient bit operation or integer-

only arithmetic.

Despite the attractive benefits, when quantizing into ex-

tremely low bit, existing binary and uniform quantization

models still face the severe performance degradation, due

to the limited and discrete quantization levels [6]. First,

based on the discrete quantized representation, the back-

ward propagation can hardly access the accurate gradients,

and thus has to resort to the appropriate approximation.

In the literature, straight through estimation (STE) [4] has

been widely used for approximation. But it ignores the in-

fluence of quantization, and when the data is quantized to

extremely low bit, its error will be amplified, causing an ob-

vious instability of optimization. Experiments and analysis

in [26, 8, 24] have shown that the gradient error caused by

quantization and STE greatly harms the accuracy of quan-

tized models.

Besides, the quantization itself inevitably brings large
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deviations between the original data and their quantization

values, and thus often causes the performance decrease. In

practice, the quantization is usually completed by two op-

erations: clipping and rounding. The former confines data

to a smaller range, while the latter maps the original value

to its nearest quantization point. Both operations contribute

to the quantization loss. Therefore, to alleviate the perfor-

mance degradation, it is also important to find an appropri-

ate clipping range and make a balance between clipping and

rounding [7, 20].

To solve the problems, in this paper we introduce Differ-

entiable Soft Quantization (DSQ) to well approximate the

standard binary and uniform quantization process (see the

framework in Figure 1). DSQ employs a series of hyper-

bolic tangent functions to gradually approach the staircase

function for low-bit quantization (e.g., sign for 1-bit case),

and meanwhile keeps the smoothness for easy gradient cal-

culation. We reformulate the DSQ function with respect to

an approximation characteristic variable, and correspond-

ingly develop an evolution training strategy to progressively

learn the differential quantization function. During training,

the approximation between DSQ and standard quantization

can be controlled by the characteristic variable, which to-

gether with the clipping values can be automatically de-

termined in the network. Our DSQ decreases deviations

caused by extremely low-bit quantization, and thus makes

the forward and backward process more consistent and sta-

ble in the training.

The specific design makes the DSQ own the following

advantages compared to the state-of-the-art solutions:

• Novel quantization. We introduce a DSQ function to

well approximate the standard binary and uniform quan-

tization. The approximation of DSQ can be easily con-

trolled in the evolution training way.

• Easy convergence. DSQ acts as a rectifier to gradu-

ally redistribute the data according to quantization points.

Thus the backward propagation becomes more consistent

with the forward pass, leading to an easier convergence

with the accurate gradients.

• Balanced loss. With the help of DSQ, we can jointly

determine the clipping range and approximation of the

quantization, and thus balance the quantization loss in-

cluding clipping error and rounding error.

• High efficiency. DSQ can be implemented based on

our fast computation kernels, and its inference speed

surpasses most open-source high performance inference

frameworks.

• Strong flexibility. DSQ is compatible with the binary or

uniform quantization methods, easy to deploy in state-of-

the-art network structures and able to get further accuracy

improvement.

2. Related Work

2.1. Network Quantization

Network quantization aims to obtain low-precision net-

works with high accuracy. One way to speed up low-

precision networks is to utilize bit operation [16, 9, 8, 25,

45, 23, 13, 33]. They quantize weights or activations to {-

1, +1} or {-1, 0, +1}. Because only two or three values

can be used, training a binary or ternary model with high

accuracy is very challenging. Another way to achieve ac-

celeration is to uniformly convert weight and activations to

fix-point representation. [18] has verified the feasibility of

8-bit uniform fix-point quantization. But lower bit quanti-

zation faces more challenges on accuracy. To address this

problem, [7, 20] try to optimize the clipping value or quan-

tization interval for the task specific loss in an end-to-end

manner. [36, 46, 39] apply different techniques to find op-

timal bit-widths for each layer. [42] and [20] optimize the

training process with incremental and progressive quantiza-

tion. [29] and [16] adjust the network structure to adapt to

quantization. [28] introduces knowledge distillation to im-

prove quantized networks’ performance. [41] learns a more

flexibility quantizer with basis vector. Besides, there are

other non-uniform methods like [30, 13, 3, 35, 37, 38, 44]

which may need delicate hardware to get acceleration.

2.2. Efficient Deployment

With hardware-friendly network quantization, many effi-

cient deployment frameworks are emerging. NVIDIA Ten-

sorRT [27] is a high-performance deep learning inference

platform. It provides INT8 optimizations for deployments

on GPU devices. Intel Caffe [11] is a fork of official Caffe

[19] to improve performance on CPU, in particular Intel

Xeon processors. Gemmlowp is a low-precision GEMM

library in tensorflow [1] supporting ARM and Intel X86.

NCNN [31] is Tencent’s inference framework optimized

for mobile platforms. These frameworks usually support

8-bit integer arithmetic, but does not do specific optimiza-

tion for lower bit computation. To validate the efficiency of

our quantization method, in this paper we implement 2-bit

fast integer arithmetic with ARM NEON technology, which

is an advanced SIMD architecture extension for the ARM

Cortex-A series and Cortex-R52 processors.

3. Differentiable Soft Quantization

In this paper, we consider the standard 1-bit binary and

multi-bit uniform quantization.

3.1. Preliminaries

For 1-bit binary quantization, the binary neural network

(BNN) limits its activations and weights to either -1 or +1,
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Figure 1. An overview of Differentiable Soft Quantization (DSQ), taking 2-bit uniform quantization as an example. During training, we

apply piecewise DSQ to redistribute the data and make it automatically evolve in each epoch to behave more like uniform quantization.

After training, the piecewise DSQ can completely convert to the hard uniform quantization by sign operation, ensuring an easy and efficient

deployment on resource limited devices.

usually using the binary function:

QB(x) = sgn(x) =

{

+1, if x ≥ 0,

−1, otherwise.
(1)

For multi-bit uniform quantization, given the bit width b
and the floating-point activation/weight x following in the

range (l, u), the complete quantization-dequantization pro-

cess of uniform quantization can be defined as:

QU (x) = round(
x

∆
)∆, (2)

where the original range (l, u) is divided into 2b − 1 inter-
vals Pi, i ∈ (0, 1, . . . , 2b−1), and ∆ = u−l

2b−1
is the interval

length.

3.2. Quantization function

The derivative of binary/uniform quantization function

is zero almost everywhere, which not only makes the train-

ing of the quantized network unstable, but also largely de-

creases the accuracy. To reduce the gap between the full-

precision model and its quantized low-precision model, a

differentiable asymptotic function is first introduced to ap-

proximately model the binary/uniform quantizer. This func-

tion handles the point x falling in different intervals Pi:

ϕ(x) = s tanh (k(x−mi)) , if x ∈ Pi, (3)

with
mi = l + (i+ 0.5)∆ and s =

1

tanh(0.5k∆)
. (4)

The scaling parameter s guarantees that tanh functions

of ϕ for the adjacent intervals can be smoothly connected

(see Figure 2(a)). Owing to the highly symmetry of the

tanh function, ϕ will be continuously differentiable ev-

erywhere. Besides, the coefficient k determines the shape

of the asymptotic function. Namely, the larger k is, the

more the asymptotic function behaves like the desired stair-

case function generated by uniform quantizer with multiple

quantization levels.

Based on the asymptotic function ϕ, we can have our dif-

ferentiable soft quantization (DSQ) function, approximat-

ing the uniform quantizer:

QS(x) =















l, x < l,

u, x > u,

l +∆
(

i+ ϕ(x)+1
2

)

, x ∈ Pi

(5)

As shown in Figure 1, the curve of the asymptotic func-

tion gradually approaches the piecewise curve of the uni-

form quantizer, when k becomes larger. Thus in practice

we can also utilize it to simulate the influence of real quan-

tization in the forward pass and this function is well behaved

for purposes of calculating gradients in the backward pass.

From another view, DSQ acts as a rectifier, which align the

data with its quantization points with small quantization er-

ror simply by the redistribution. Subsequently, during the

backward propagation, the gradient can better reflect the

correct direction of updating.

When ϕ composites with the sign function, DSQ can

serve as a piecewise uniform quantizer (see Figure 2(a)).

It is worth mentioning that when there is only one interval,

we can also simulate the standard model binarization in this

way (see Figure 2(b)). This means the binary quantization

in (1) can also be treated as a special case of our soft quan-

tization function.

3.3. Evolution to the standard quantization

With the DSQ function, we can easily find a differ-

entiable substitute for standard quantization. However,

how well the DSQ approximates the standard quantization

can largely affect the behaviors of the quantized models.

Namely, it is highly required we can adaptively choose the

appropriate parameters of DSQ in the training process, and

thus promise the controlled approximation according to the

optimization goal of the quantized network.

To achieve this goal, it is important to find a character-

istic variable to measure the approximation between DSQ
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Figure 2. Curves of differentiable soft quantization function for (a)

uniform quantization, (b) binary quantization, a special case of (a).

and standard quantization. Figure 3(a) shows the curve of

DSQ in one interval without scaling to −1 and +1. It is

easy to prove that when the distance from the maximal point

in the curve to the upper bound +1 is small enough, DSQ

function can perfectly approximates the standard quantizer.

Based on this observation, we introduce the characteristic

variable α as follows:

α = 1− tanh(0.5k∆) = 1−
1

s
. (6)
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Figure 3. The characteristic variable α in DSQ.

Furthermore, we can reformulate the DSQ function only

with respect to the parameter α and ∆. Specifically, based

on the above equation, we have

s =
1

1− α
. (7)

With the facts ∆ = u−l
2b−1

and ϕ(0.5∆) = 1, we also have

k =
1

∆
log(

2

α
− 1). (8)

Figure 3(b) illustrates the effect of α, where 2-bit quan-

tized models are first trained using DSQ with respect to dif-

ferent α. The curves respectively show the inference accu-

racy performance of DSQ, DSQ appended with sign func-

tion, and standard uniform quantization. It is easy to see that

our DSQ with sign function can perform quite consistently

with the uniform quantization. Especially, when α is small,

DSQ can well approximate the performance of the uniform

quantization. This means an appropriate α will enble DSQ

to help train a quantized model with high accuracy.

Now we can see that the approximation power of DSQ

actually depends on the appropriate α, which plays an im-

portant role in the optimization. To adaptively determine

it, we introduce an evolution training strategy, which takes

α as a variable to be optimized in the quantized network.

In this way, we can adaptively adjust α and force DSQ to

evolve into the standard quantizer during the training. For-

mally, we can formulate it as the network loss minimization

problem with respect to the input x and output y at each

layer:
min
α

L(α;x, y) s.t. ||α||2 < λ (9)

According to the formulation, we can calculate the gradient

of α in the backward process and then automatically adjust

it with the L2 regularization constraint.

∂y

∂α
=











0, x < l,

0, x > u,
∂QS(x)

∂α
, x ∈ Pi

(10)

3.4. Balancing clipping error and rounding error

Clipping and rounding together cause the quantization

error. Usually, when the quantizer clips more, the clipping

error increases and the rounding error decreases. Owing to

the differentiable evolution from the soft quantizer to the

standard quantizer, we can further analyze the connections

between clipping error and rounding error in DSQ. Specif-

ically, we can jointly optimize the lower bound and upper

bound of clipping to pursue a balance between clipping er-

ror and rounding error.

∂y

∂l
=











1, x < l,

0, x > u,

1 + q ∂∆
∂l

+ ∆
2

∂ϕ(x)
∂l

, x ∈ Pi

(11)

∂y

∂u
=











0, x < l,

1, x > u,

q ∂∆
∂u

+ ∆
2

∂ϕ(x)
∂u

, x ∈ Pi

(12)

where

q = i+
1

2
(ϕ(x) + 1). (13)

From (11) and (12), we can conclude that the large out-

lier points are clipped by u and mainly contribute to the up-

date of u, while the small ones are clipped by l and mainly

contribute to the update of l. Data points falling in the mid-

dle range will influence derivative of both u and l. When

clipping error dominates the whole quantization error, the

outliers’ gradients will be large and thus serve as the ma-

jor power for weight updating. Otherwise, when rounding

error dominates the error, points in the middle range will

affect more in the process of backward propagation.
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Now we can see our DSQ function has three key param-

eters: α, l and u, all of which can be optimized during train-

ing. By optimizing the clipping values jointly with the sim-

ilarity factor α, we not only find an evolutional and differ-

entiable approximation to the standard quantization func-

tion, but also balance the clipping error and rounding error,

which together help bridge the accuracy gap between the

full-precision and extremely low-bit quantized models.

3.5. Training and Deploying

In this paper DSQ function is proposed with the evolu-

tion training to optimize both the DSQ and network param-

eters, aiming to fine-tune a quantized network from full-

precision network. The detailed fine-tuning procedures for

the convolution network are listed in Algorithm 1.

Algorithm 1 Feed-Forward and Back-Propagation proce-

dures for a convolution layer quantized with DSQ.

Input: the input activation a

Parameters: weight w, clip value la, ua, lw, uw and

similarity factor αa, αw

Output: the output activation o

Feed-Forward

1: Clip a with la,ua and clip w with lw, uw

2: Apply asymptotic function ϕ to activation and

weight

asq = ϕa(a)
wsq = ϕw(w)

3: Keep consistent with standard quantization

aq = sgn(asq)
wq = sgn(wsq)

4: Dequantize aq and wq

â = la +∆a(i+
aq+1

2 )

ŵ = lw +∆w(j+
wq+1

2 )
5: Calculate the output: o = Convolution(ŵ, â)

Backward-Propagation

6: Calculate the gradients(take a as an example)
∂L
∂a

= ∂L
∂â

∂â
∂aq

∂asq

∂a

∂L
∂αa

= ∂L
∂â

∂â
∂aq

∂asq

∂αa

∂L
∂la

= ∂L
∂â

{1 + (i+
aq+1

2 )∂∆a

∂la
+ ∆a

2
∂asq

∂la
}

∂L
∂ua

= ∂L
∂â

{(i+
aq+1

2 )∂∆a

∂ua

+ ∆a

2
∂asq

∂ua

}
Parameters Update

7: Update all parameters with the learning rate η

For deploying on devices with limited computing re-

sources, we also implement the low-bit computation kernels

to accelerate the inference on ARM architecture. In the con-

volution networks, multiply and accumulation are the core

operations of General Matrix Multiply (GEMM), which can

be efficiently completed by the MLA instruction on ARM

NEON. MLA multiplies two numbers in 8-bit registers and

accumulates the result into an 8-bit register. In case that the

accumulator is nearly overflowed, we can transfer the value

to a 16-bit register by the SADDW instruction. Figure 4

shows the complete data flow of our GEMM kernel.

MLA

SADDW

SADDW

until overflow

until overflow

16×8 bit

16×8 bit

4×32 bit

······

8×16 bit

···

until overflow

16×8 bit

···

2-bit

2-bit

Figure 4. Data flow in our fast GEMM implementation.

Though SADDW takes extra computational cost than

MLA, fortunately we can reduce the probability that the

data transferring occurs. Given two b-bit signed numbers,

we can call MLA instruction up to 27−1
(−2b−1)2

times until

transferring the result to the 16-bit register by SADDW. The

ratio of times for calling MLA and 16-bit register SADDW

is listed in Table 1. It can be concluded that better accel-

eration performance will be achieved with lower quantized

bits. In practice, our low-bit GEMM kernels can outperform

the other open-source inference frameworks.

Table 1. Ratio of time for calling MLA (8-bit register) and

SADDW (16-bit register) with respect to different number of

quantized bits.

b 2 3 4

MLA/SADDW 31/1 7/1 1/1

4. Experiments

In this section, we conduct extensive experiments to

demonstrate the effectiveness of the proposed DSQ, on two

popular image classification datasets: CIFAR-10 [22] and

ImageNet (ILSVRC12) [10]. The CIFAR-10 dataset con-

sists of 50K training images and 10K testing images of

size 32×32 with 10 classes. ImageNet ILSVRC12 contains

about 1.2 million training images and 50K testing images

with 1,000 classes.

4.1. Settings

DSQ function: We implement DSQ using Pytorch [32], as

a flexible module that can be easily inserted to the binary

or uniform quantization models. Because the DSQ function

is differentiable, it can be implemented directly with Py-

torch’s automatic differentiation mechanism. There are two

ways to quantize model to 1-bit, i.e., the binarization with

{−1,+1} and the uniform quantization. Our DSQ func-

tion is compatible with both approaches. When building up

a quantized model, we simply insert DSQ function to all

places that will be quantized, e.g., the inputs and weights of

a convolution layer.

Network structures: We employ the widely-used net-

work structures including VGG-Small [41], ResNet-20 for

CIFAR-10, and ResNet-18, ResNet-34 [14], MobileNetV2

[34] for ImageNet. For binarized models, we adopt
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parameter-free type-A shortcut as [15] and apply the acti-

vation function replacement introduced by [16]. All con-

volution and fully-connected layers except the first and the

last one are quantized with DSQ.

Initialization: For initialization, we try fine-tuning from

a pre-train model and training from scratch. For hyper-

parameters, we follow the rules described in the origin pa-

pers [7, 14, 15, 41]. For parameter α, we choose 0.2 as an

initial value. For clipping value l and u, we try the following

two strategies: moving average statistics and optimization

by backward propagation.

4.2. Analysis of DSQ

First, we empirically analyze DSQ from the aspects of

rectification, convergence, evolution, etc.

4.2.1 Rectification

An important effect of DSQ function is to redistribute the

data and align them to the quantization values, which subse-

quently decrease the backward propagation error. To inves-

tigate this point, in Figure 5 we visualize the weight’s dis-

tribution of ResNet-20 on CIFAR-10 before and after 2-bit

DSQ function. From the figure, we can observe that the data

distribution, originally similar to normal distribution (Fig-

ure 5(a)), appears with a few peaks in the histogram after

DSQ’s rectification (Figure 5(b)), and subsequently the data

can be completely quantized to 4 quantization points after

the sign function (Figure 5(c)). This observation proves that

DSQ serves as a promising bridge between the origin full-

precision model and low-bit quantized model, largely re-

ducing the quantization loss in practice.

layer2.2 conv2 filter#1

−0.4 −0.2 0.0 0.2 0.40

3
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Figure 5. Data distribution before and after DSQ (2-bit).

4.2.2 Convergence

State-of-the-art binary/uniform quantized networks often

adopt the training strategy that directly applies quantization

in forwarding process, but STE in backward process. They

ignore the negative effect of the quantization loss on the gra-

dient calculation, and thus often face the unstable training

in most cases. We here show that training these models with

our DSQ can significantly improve the ability to converge.

With the redistribution of DSQ, the numerical difference

between quantized data and full-precision data is decreased,

contributing to a more accurate backward. From another

perspective, the introducing of DSQ can be viewed as an op-

timizer of STE, which can improve the ability to converge

in process of optimization. Figure 6 compares the accuracy

curves of validation with and without DSQ when using bi-

narization in VGG-Small on CIFAR-10 and 3-bit uniform

quantization in ResNet-34 on ImageNet. We can find that

training with DSQ can achieve higher accuracy.
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Figure 6. Training quantized model with/without DSQ function.

4.2.3 Evolution

The automatic evolution of DSQ function is the key to the

feasible approximation to the standard quantization, which

is determined by the similarity factor α. In our experiments,

for both weights and activations of ResNet-20 on CIFAR-

10, α is initialized to 0.2, and to ensure the stability, we limit

it to a reasonable range of (0, 0.5) with k ≤ 1000. Figure

7 (a) and (b) respectively plot the curves of α per step for

activations and weights during the evolution training.
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0.20
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(a) α for activations
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epoch

0.12

0.14
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0.22

0.24

(b) α for weights

Figure 7. Automatic evolution of α during training.

For both activations and weights, we can see that at the

beginning of training, α will increase sharply. Considering

when α becomes large, DSQ behaves more like an iden-

tity operation, this phenomenon implies that we should not

quantize much at the beginning. After that, α decreases

gradually and finally converges to a stable value, which

makes DSQ approximate the standard quantization. In the

whole training process, α is automatically adjusted accord-

ing to the network loss, and thus enables the stronger flexi-

bility of DSQ than the incremental quantization relying on

manually adjusting.
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Table 2. Learnt α for activations and weights of ResNet-20

Layer Weight Activation

layer1.0.conv1 0.1075 0.3455

layer1.0.conv2 0.0950 0.3101

layer1.1.conv1 0.0895 0.3046

layer1.1.conv2 0.0868 0.2526

layer1.2.conv1 0.1368 0.3621

layer1.2.conv2 0.0926 0.3401

layer2.0.conv1 0.1578 0.3903

layer2.0.conv2 0.1810 0.3785

layer2.0.downsample.0 0.0828 0.2887

layer2.1.conv1 0.1641 0.2722

layer2.1.conv2 0.1162 0.2663

layer2.2.conv1 0.1605 0.2690

layer2.2.conv2 0.1059 0.2440

layer3.0.conv1 0.2042 0.3993

layer3.0.conv2 0.2779 0.4532

layer3.0.downsample.0 0.0914 0.2327

layer3.1.conv1 0.2484 0.4241

layer3.1.conv2 0.2301 0.3918

layer3.2.conv1 0.1965 0.4238

layer3.2.conv2 0.0975 0.3277

Table 2 also reports the final optimal α of each layer.

First, we find that usually α of weights is smaller than that

of activations. This means that in the low-bit quantized net-

work usually weights are more tolerant to the quantization,

while activations are more sensitive, which conforms to the

experiences and conclusions of previous studies [43, 7].

Second, different layers show different sensitivity to the

quantization. For example, the downsampling convolution

layers can be quantized much (a small α), while some lay-

ers such as layer3.0.conv2 are not suitable for quantization

(a large α). This conclusion is very useful for understanding

and improving the network quantization.

4.3. Ablation study

To further understand how DSQ works in practice, we

also conduct the ablation study on both model binarization

and uniform quantization. We specify α as 0.2 for net-

work binarization experiments. From Table 3, we can see

that even the naive DSQ with the fixed α brings stable im-

provement over the basic binarization strategy that directly

applies sign function over ResNet-20 on CIFAR-10, e.g.,

nearly 2% performance gain for the 1W1A (1-bit quantiza-

tion for both weight and activation) case.

In Table 4, we further study the effect of evolution

training (learnt α) and balanced quantization error (learnt

l, u) over the 2-bit uniform quantization of ResNet-20 on

CIFAR-10. It is obvious that learning the adaptive α and the

clipping values l, u respectively brings accuracy improve-

ment. Besides, since DSQ can be conveniently inserted to

any standard quantization method, we further investigate its

Table 3. Ablation study on 1-bit binarized quantization.

Method Bit-Width (W/A) Accuracy (%)

FP 32/32 90.84

Binary 1/1 82.46

Binary DSQ 1/1 83.80

Piecewise DSQ 1/1 84.11

Binary 1/32 90.11

Binary DSQ 1/32 90.24

Piecewise DSQ 1/32 90.03

performance over the state-of-the-art quantization method

PACT [7]. We implement the PACT method and the results

in Table 4 show that DSQ can further boost the performance

of PACT, proving the flexibility and generality of DSQ.

Table 4. Ablation study on 2-bit uniform quantization.

Method Top-1 (%) Top-5 (%)

Standard Quantization 86.63 99.35

Fixed α 86.95 99.50

Learnt α 87.25 99.49

Learnt α, l, u 88.44 99.50

Table 5. Ablation study on 2-bit PACT.

Method Top-1 (%) Top-5 (%)

PACT 88.24 99.60

PACT+DSQ 90.11 99.71

4.4. Comparison with State­of­the­arts

Next we comprehensively evaluate DSQ by comparing it

with the existing state-of-the-art quantization methods.

Comparison on CIFAR-10: Table 6 lists the perfor-

mance using different methods on CIFAR-10, respectively

including BNN [16], XNOR-Net [33] over VGG-Small, and

DoReFa-Net [43], LQ-Net [41] over ResNet-20. All meth-

ods quantize weights or activations to 1 bit. In all cases,

our DSQ obtains the best performance for the two differ-

ent network structures. More importantly, when using 1-bit

activations and 1-bit weights (1/1), our method gets very

significant improvement (i.e., 84.11% v.s. 79.30%) over

the state-of-the-art DoReFa-Net [43]. Note that for VGG-

Small, DSQ using 1-bit weights and activations can even

obtain better performance than the full-precision model.

Comparison on ImageNet: For the large-scale case, we

study the performance of DSQ over ResNet-18, ResNet-34

and MobileNetV2 on ImageNet. Table 7 shows a number of

state-of-the-art quantization methods including BWN [33],

HWGQ [5], TWN [23], PACT [7], LQ-Net [41], ABC-

Net [25] and BCGD [40], with respect to different set-

tings. From the table, we can observe that when only quan-

tizing weights over ResNet-18, DSQ using 1 bit outper-

forms BWN and HWGQ by large margins and even sur-

passes TWN using 2 bits. Besides, over both ResNet-18

and ResNet-34, the accuracy of our method using 2-bit and

3-bit quantization is also consistenly higher than LQ-Net
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Table 6. Comparison of 1-bit quantized models on CIFAR-10.

Model Method
Bit-Width

(W/A)
Accuracy (%)

VGG-Small

FP 32/32 91.65

BNN [16] 1/1 89.90

XNOR [33] 1/1 89.80

Ours 1/1 91.72

ResNet-20

FP 32/32 90.78

DoReFa [43] 1/1 79.30

Ours 1/1 84.11

DoReFa [43] 1/32 90.00

LQ-Net [41] 1/32 90.10

Ours 1/32 90.24

Table 7. Comparison of different quantized models on ImageNet.

Model Method
Bit-Width

(W/A)
Accuracy (%)

ResNet-18

FP 32/32 69.90

BWN [33] 1/32 60.80

HWGQ [5] 1/32 61.30

TWN [23] 2/32 61.80

Ours 1/32 63.71

PACT [7] 2/2 64.40

LQ-Net [41] 2/2 64.90

Ours 2/2 65.17

ABC-Net [25] 3/3 61.00

PACT [7] 3/3 68.10

LQ-Net [41] 3/3 68.20

Ours 3/3 68.66

BCGD [40] 4/4 67.36†

Ours 4/4 69.56†

ResNet-34

FP 32/32 73.80

LQ-Net [41] 2/2 69.80

Ours 2/2 70.02

ABC-Net [25] 3/3 66.70

LQ-Net [41] 3/3 71.90

Ours 3/3 72.54

BCGD [40] 4/4 70.81†

Ours 4/4 72.76†

Mobile-

NetV2

FP 32/32 71.87

PACT [7, 36] 4/4 61.40

Ours 4/4 64.80
* The † represents the results of full quantization for activations and weights

across all convolution layers.

and ABC-Net. We should point out that LQ-Net is a non-

uniform quantization method. This means that our DSQ

simultaneously enjoys efficient inference as the uniform

methods, and competitive performance to the more com-

plex non-uniform solutions. What’s more, the accuracy of

DSQ on efficient networks such as MobileNetV2 also sig-

nificantly exceeds existing methods (e.g., 3.4% higher than

PACT [7, 36] using 4-bit), which proves the protential of

DSQ on hardware-friendly networks with a small amount

of parameters.

4.5. Deploying Efficiency

Finally, we highlight the uniqueness of our DSQ that

we support extremely low-bit (less than 4-bit) integer arith-

metic based on GEMM kernels with ARM NEON 8-bit in-

structions, while existing open-source high performance in-

ference frameworks (e.g., NCNN-8-bit [31]) usually only

support 8-bit operations. In practice, the lower bit width

doesn’t mean a faster inference speed, mainly due to the

overflow and tranferring among the registers as analyzed in

Section 3.5. But fortunately, as Table 8 shows, our imple-

mentation can accelerate the inference even using the ex-

treme lower bits. We also test the real speed of our imple-

mentation when quantizing ResNet-18 with DSQ on Rasp-

berry Pi 3B, which has a 1.2 GHz 64-bit quad-core ARM

Cortex-A53. As shown in Table 9, the inference speed us-

ing DSQ is much faster than that of NCNN.

Table 8. Time cost (ms) of the typical 3×3 convolution in ResNet

using different number of bits (single thread).

input size #output 4-bit 3-bit 2-bit

64x56x56 64 43.80 40.06 38.11

128x28x28 128 33.89 29.94 28.15

256x14x14 256 37.03 31.16 29.20

512x7x7 512 30.20 26.14 25.43

Table 9. Comparison of time cost of ResNet-18 on different infer-

ence frameworks with different bits (single thread).

DSQ 2-bit NCNN 8-bit [31]

time (ms) 551.22 935.51
* NCNN was tested with commit d263cd5 on 2019.3.15.

5. Conclusions

In this paper, we proposed the Differentiable Soft

Quantization (DSQ) method to eliminate the accuracy

gap between the full-precision networks and low-bit (bi-

nary/uniform) quantization networks. DSQ can evolve dy-

namically during end-to-end training to approximate stan-

dard quantization. Since it can reduce both the gradi-

ent deviation of backward propagation and the quantiza-

tion loss in forward inference, state-of-the-art accuracy for

various network structures can be promised. As a gen-

eral module supporting both model binarization and uni-

form quantization, it also enjoys strong flexibility to im-

prove the performance of different quantization methods,

and high hardware-friendly efficiency based on the fast fix-

point GEMM kernels implementation.
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